Inspired by Jake Lai

Calculus Level 5

Evaluate lim n ζ ( n + π ) ( ζ ( n ) 1 ) ζ ( n ) ( ζ ( n + π ) 1 ) \lim _{ n\to \infty } \frac { \zeta '(n+\pi )(\zeta (n)-1) }{ \zeta '(n)(\zeta (n+\pi )-1) }


d d s ζ ( s ) = ζ ( s ) \frac{d}{ds} \zeta{(s)}=\zeta'{(s)}

π = 3.1415... \pi=3.1415...


The answer is 1.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ishan Singh
Feb 24, 2016

Note that,

lim n ( ζ ( n ) 1 ) = 0 \displaystyle \lim_{n \to \infty} \left(\zeta(n) - 1\right) = 0

Consider,

lim n n ( ζ ( n ) 1 ) \displaystyle \lim_{n \to \infty} n(\zeta(n) - 1)

Using L' Hopital's Rule, we have,

lim n n ( ζ ( n ) 1 ) = lim n ( ζ ( n ) 1 1 n ) = lim n ( ζ ( n ) 1 n 2 ) ( 0 0 ) \displaystyle \lim_{n \to \infty} n(\zeta(n) - 1) = \lim_{n \to \infty} \left(\dfrac{\zeta(n) - 1}{\frac{1}{n}}\right) = \lim_{n \to \infty} \left(\dfrac{\zeta '(n)}{-\frac{1}{n^2}}\right) \qquad \left( \because \dfrac{\to 0}{\to 0}\right)

lim n ( ζ ( n ) 1 ) = n ζ ( n ) \displaystyle \implies \lim_{n \to \infty} \left(\zeta(n) -1\right) = -n \zeta '(n)

Now,

lim n ζ ( n + π ) ( ζ ( n ) 1 ) ζ ( n ) ( ζ ( n + π ) 1 ) = lim n ζ ( n + π ) ( n ζ ( n ) ) ζ ( n ) ( ( n + π ) ζ ( n + π ) ) \displaystyle \lim _{ n \to \infty } \dfrac { \zeta '(n+\pi )(\zeta (n)-1) }{ \zeta '(n)(\zeta (n+\pi )-1) } = \lim _{ n\to \infty } \dfrac { \zeta '(n+\pi )(n \zeta '(n)) }{ \zeta '(n)((n + \pi) \zeta '(n+\pi )) }

= lim n n n + π = 1 \displaystyle = \lim_{n \to \infty} \dfrac{n}{n+ \pi} = \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...