Inspired by Jerry Han Jia Tao

Algebra Level 5

How many real pairs of ( x ; y ) (x;y) satisfied the following system of equation { x 3 + 1 x 2 y y 2 = 0 y 3 + 1 y 2 x x 2 = 0 \begin{cases}x^3+1-x^2y-y^2=0 \\ y^3+1-y^2x-x^2=0 \end{cases}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jan 28, 2016

Subtracting the given equations we get: x 3 y 3 x 2 y + y 2 x + x 2 y 2 = 0 x^3-y^3-x^2y+y^2x+x^2-y^2=0 ( x y ) ( x 2 + y 2 + x + y ) = 0 \Rightarrow (x-y)(x^2+y^2+x+y)=0 1. x = y \color{darkviolet}{1. ~x=y} Substituting x=y in the first equation gives x = ± 1 a n d c o r r e s p o n d i n g y = ± 1. \text{Substituting x=y in the first equation gives }\\~x=\pm 1 ~and ~corresponding ~y=\pm 1.\\ 2. x 2 + y 2 + x + y = 0 \color{darkviolet}{2.~x^2+y^2+x+y=0} Substituting x+y=t in this equationto get xy= t 2 + t 2 \dfrac{t^2+t}{2} . Now adding the equations given in the question, we get ( x + y ) ( x 2 + y 2 x y ) + 2 x y ( x + y ) ( x 2 + y 2 ) = 0 (x+y)(x^2+y^2-xy)+2-xy(x+y)-(x^2+y^2)=0 Substituting x+y=t and using x 2 + y 2 = x y ( a s i n 1 ) x^2+y^2=-x-y(\color{darkviolet}{as~in~1}) t 3 + 3 t 2 t 2 = 0 \large t^3+3t^2-t-2=0 ( t 1 ) ( t + 1 ) ( t + 2 ) = 0 \Rightarrow (t-1)(t+1)(t+2)=0 t = x + y = x 2 y 2 = 1 , 2 ( 1 r e j e c t e d ) \Rightarrow t=x+y=-x^2-y^2=-1,-2~~(~1~rejected) Solving with x 2 + y 2 + x + y = 0 , x^2+y^2+x+y=0,\\ we get two more solutions viz(0,-1)(-1,0) Hence there are 4 4 pairs of solutions i.e ( 1 , 1 ) ( 1 , 1 ) ( 0 , 1 ) ( 1 , 0 ) \Large (1,1)(-1,-1)(0,-1)(-1,0)

Son Nguyen
Jan 28, 2016

( 1 ) ( 2 ) ( x y ) ( x 2 + y 2 + x + y ) = 0 (1)-(2)\Rightarrow (x-y)(x^2+y^2+x+y)=0 Case 1:x=y x = y x 2 1 = 0 x = y = ± 1 2 p a i r s x=y\Rightarrow x^2-1=0\Leftrightarrow x=y=\pm 1\rightarrow 2 pairs Case 2: { x 2 + y 2 + x + y = 0 ( 1 ) x 3 + 1 x 2 y y 2 = 0 ( 2 ) \left\{\begin{matrix} x^2+y^2+x+y=0 (1)& & \\ x^3+1-x^2y-y^2=0 (2)& & \end{matrix}\right. ( 1 ) + ( 2 ) x 3 + x 2 x 2 y + x + y + 1 = 0 (1)+(2)\Leftrightarrow x^3+x^2-x^2y+x+y+1=0 ( x + 1 ) ( x 2 x y + y + 1 ) = 0 \Leftrightarrow (x+1)(x^2-xy+y+1)=0 Case 2.1:x=-1 x = 1 y 2 + y = 0 ( x , y ) = ( 1 , 0 ) ; ( 1 , 1 ) \Leftrightarrow x=-1\rightarrow y^2+y=0\Leftrightarrow (x,y)=(-1,0);(-1,-1) So we get 1 more pair. Case 2.2: { x 2 + y x y + 1 = 0 ( 3 ) x 2 + y 2 + x + y = 0 ( 4 ) \left\{\begin{matrix} x^2+y-xy+1=0 (3)& & \\ x^2+y^2+x+y=0 (4)& & \end{matrix}\right. ( 3 ) ( 4 ) y 2 + x + x y 1 = 0 ( y + 1 ) ( x + y 1 ) = 0 (3)-(4)\Rightarrow y^2+x+xy-1=0\Leftrightarrow (y+1)(x+y-1)=0 case 2.2.1: y = 1 x 2 + x = 0 ( x , y ) = ( 0 , 1 ) y=-1\rightarrow x^2+x=0\Rightarrow (x,y)=(0,-1) -1 more pair case 2.2.2: x + y = 1 y 2 + y + 1 = 0 ( x , y ) = θ x+y=1\rightarrow y^2+y+1=0\rightarrow (x,y)= \theta (No solution) So we have 4 pairs satisfy the system of equation

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...