How many real pairs of ( x ; y ) satisfied the following system of equation { x 3 + 1 − x 2 y − y 2 = 0 y 3 + 1 − y 2 x − x 2 = 0
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( 1 ) − ( 2 ) ⇒ ( x − y ) ( x 2 + y 2 + x + y ) = 0 Case 1:x=y x = y ⇒ x 2 − 1 = 0 ⇔ x = y = ± 1 → 2 p a i r s Case 2: { x 2 + y 2 + x + y = 0 ( 1 ) x 3 + 1 − x 2 y − y 2 = 0 ( 2 ) ( 1 ) + ( 2 ) ⇔ x 3 + x 2 − x 2 y + x + y + 1 = 0 ⇔ ( x + 1 ) ( x 2 − x y + y + 1 ) = 0 Case 2.1:x=-1 ⇔ x = − 1 → y 2 + y = 0 ⇔ ( x , y ) = ( − 1 , 0 ) ; ( − 1 , − 1 ) So we get 1 more pair. Case 2.2: { x 2 + y − x y + 1 = 0 ( 3 ) x 2 + y 2 + x + y = 0 ( 4 ) ( 3 ) − ( 4 ) ⇒ y 2 + x + x y − 1 = 0 ⇔ ( y + 1 ) ( x + y − 1 ) = 0 case 2.2.1: y = − 1 → x 2 + x = 0 ⇒ ( x , y ) = ( 0 , − 1 ) -1 more pair case 2.2.2: x + y = 1 → y 2 + y + 1 = 0 → ( x , y ) = θ (No solution) So we have 4 pairs satisfy the system of equation
Problem Loading...
Note Loading...
Set Loading...
Subtracting the given equations we get: x 3 − y 3 − x 2 y + y 2 x + x 2 − y 2 = 0 ⇒ ( x − y ) ( x 2 + y 2 + x + y ) = 0 1 . x = y Substituting x=y in the first equation gives x = ± 1 a n d c o r r e s p o n d i n g y = ± 1 . 2 . x 2 + y 2 + x + y = 0 Substituting x+y=t in this equationto get xy= 2 t 2 + t . Now adding the equations given in the question, we get ( x + y ) ( x 2 + y 2 − x y ) + 2 − x y ( x + y ) − ( x 2 + y 2 ) = 0 Substituting x+y=t and using x 2 + y 2 = − x − y ( a s i n 1 ) t 3 + 3 t 2 − t − 2 = 0 ⇒ ( t − 1 ) ( t + 1 ) ( t + 2 ) = 0 ⇒ t = x + y = − x 2 − y 2 = − 1 , − 2 ( 1 r e j e c t e d ) Solving with x 2 + y 2 + x + y = 0 , we get two more solutions viz(0,-1)(-1,0) Hence there are 4 pairs of solutions i.e ( 1 , 1 ) ( − 1 , − 1 ) ( 0 , − 1 ) ( − 1 , 0 )