The Inequality Inspired by Joel Tan

Algebra Level 5

Let x , y , z 0 x, y, z\geq 0 be reals such that x + y + z = 1 x+y+z=1 .

Find the maximum possible value of

x ( x + y ) 5 ( y + z ) 4 ( x + z ) 4 x (x+y)^5(y+z)^4(x+z)^4

The answer can be written as a i b j c k \dfrac {a^i}{b^jc^k} for positive integers a , b , c , i , j , k a, b, c, i, j, k , where a , b , c a, b, c are as small as possible. Find a + b + c + i + j + k a+b+c+i+j+k .

Inspiration


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniel Liu
Jun 24, 2015

By AM-GM, 1 2 = x + y + z 2 x ( y + z ) x ( y + z ) 1 4 \dfrac{1}{2}=\dfrac{x+y+z}{2}\ge \sqrt{x(y+z)} \implies x(y+z)\le \dfrac{1}{4} With equality case x = y + z x=y+z

By AM-GM, 1 6 = 5 ( x + y ) 5 + 3 ( y + z ) 3 + 4 ( x + z ) 4 12 1 5 5 3 3 4 4 ( x + y ) 5 ( y + z ) 3 ( x + z ) 4 12 ( x + y ) 5 ( y + z ) 3 ( x + z ) 4 5 5 3 3 4 4 6 12 = 5 5 3 9 2 4 \begin{aligned} \dfrac{1}{6}&=\dfrac{\dfrac{5(x+y)}{5}+\dfrac{3(y+z)}{3}+\dfrac{4(x+z)}{4}}{12}\\ &\ge \sqrt[12]{\dfrac{1}{5^5\cdot 3^3\cdot 4^4}(x+y)^5(y+z)^3(x+z)^4}\\ &\implies (x+y)^5(y+z)^3(x+z)^4\le \dfrac{5^5\cdot 3^3\cdot 4^4}{6^{12}} =\dfrac{5^5}{3^9\cdot 2^4} \end{aligned} with equality case x + y 5 = y + z 3 = x + z 4 \dfrac{x+y}{5}=\dfrac{y+z}{3}=\dfrac{x+z}{4}

Multiplying the above two inequalities gives x ( x + y ) 5 ( y + z ) 4 ( x + z ) 4 5 5 3 9 2 6 x(x+y)^5(y+z)^4(x+z)^4\le \dfrac{5^5}{3^9\cdot 2^6} But can this be reached?

Solving for the equality case, we see that ( x , y , z ) = ( 1 2 , 1 3 , 1 6 ) (x,y,z)=\left(\dfrac{1}{2}, \dfrac{1}{3}, \dfrac{1}{6}\right) satisfies both.

This means our answer is 5 + 5 + 3 + 9 + 2 + 6 = 30 5+5+3+9+2+6=\boxed{30} and we're done.

Moderator note:

To de-mystify this solution slightly, let's see how we can "guess" at these constants. We want to apply AM-GM to

x A 5 ( 1 z A ) 5 B 4 ( 1 x B ) 4 C 4 ( 1 y C ) 5 A 5 B 4 C 4 ( x + 5 1 z A + 4 1 x B + 4 1 y C 1 + 5 + 4 + 4 ) 1 + 5 + 4 + 4 x A^5 \left( \frac{ 1-z} { A} \right)^5 B^4 \left( \frac{ 1-x} { B} \right)^4 C^4 \left( \frac{ 1-y} { C} \right)^5 \\ \leq A^5 B^4 C^4 ( \frac{x + 5 \frac{1-z}A + 4 \frac{1-x} B + 4 \frac{ 1-y} { C }}{1+5+4+4} ) ^ {1 + 5 + 4 + 4 }

We have several conditions:
1) original condition : x + y + z = 1 x +y + z = 1
2) AM-GM equality condition: x = 1 z A = 1 x B = 1 y C x = \frac{1-z}A = \frac{1-x} B = \frac{1-y}C
3) RHS is a constant condition: 1 4 B = 4 C = 5 A 1 - \frac{4}{B} = - \frac{4}{C} = - \frac{ 5}{A}


From 3, we get B = 4 A A + 5 , C = 4 A 5 B = \frac{4A}{A+5}, C = \frac{4A}{5} .
Substitute into 2, we get x = A + 5 5 ( A + 1 ) , y = 4 A 2 + 5 A + 25 25 ( A + 1 ) , z = 5 A 2 5 ( A + 1 ) x = \frac{A+5} { 5 ( A + 1) }, y = \frac{ -4A^2 + 5A + 25 } { 25 (A+1) }, z = \frac{ 5-A^2} { 5 ( A + 1) } .
Substitute into 1, we get 9 A 2 + 5 A 50 = 0 9 A^2 + 5 A - 50 = 0 .

Thus, we get A = 5 3 , 10 3 A = \frac{5}{3} , - \frac{10}{3} . Reject the negative value. This gives us B = 1 , C = 4 3 B = 1, C = \frac{4}{3} , x = 1 2 , y = 1 3 , z = 1 6 x = \frac{1}{2} , y = \frac{ 1}{3} , z = \frac{1}{6} . Now, substituting these constants into the inequality at the top, we get:

x ( 1 z ) 5 ( 1 x ) 4 ( 1 y ) 4 ( 5 3 ) 5 1 4 ( 4 3 ) 4 ( 7 14 ) 14 = 5 5 3 9 2 6 x (1-z) ^ 5 ( 1-x) ^ 4 ( 1 - y) ^ 4 \leq \left( \frac{ 5}{3} \right)^5 1 ^ 4 \left( \frac{4}{3} \right) ^ 4 \left( \frac{7}{14} \right) ^ {14} = \frac{5^5} { 3^9 2^6 }

with equality case at ( 1 2 , 1 3 , 1 6 ) ( \frac{1}{2}, \frac{1}{3}, \frac{1}{6} ) .

A great question and may I say that it's beautiful that the values of ( x , y , z ) (x,y,z) turn out to be ( 1 2 , 1 3 , 1 6 ) (\frac{1}{2},\frac{1}{3},\frac{1}{6}) . Gorgeous.

Garrett Clarke - 5 years, 11 months ago

Does the equality case only works for ( 1 2 , 1 3 , 1 6 (\frac{1}{2}, \frac{1}{3}, \frac{1}{6} )? I solved for the equality case, and it turns out that the equality is attained iff x = 3 y 2 = 3 z x = \frac{3y}{2} = 3z .

Reineir Duran - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...