Let x , y , z ≥ 0 be reals such that x + y + z = 1 where points A ( x + y , x 2 + y 2 ) , B ( x + z , x 2 + z 2 ) , and C ( y + z , y 2 + z 2 ) are the vertices of a triangle.
If the maximum area of Δ A B C can be expressed in simplest form as b c a for coprime positive integers with c square-free, what is the value of a + b + c ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Alternatively we can use the shoelace theorem to instantly obtain the formula for the area:
P = 2 1 ∣ ∑ i = 1 n x i y i + 1 − x i + 1 y i ∣ where ( x i , y i ) are the coordinates of the vertices of the polygon.
We can now substitute, obtaining the following:
P = 2 1 ∣ ( x + y ) ( x 2 + z 2 ) + ( x + z ) ( y 2 + z 2 ) + ( y + z ) ( x 2 + y 2 ) − ( x + z ) ( x 2 + y 2 ) − ( y + z ) ( x 2 + z 2 ) − ( x + y ) ( x 2 + y 2 ) ∣
Which simplifies to P = 2 1 ∣ ( x − y ) ( x − z ) ( y − z ) ∣ .
Why must ( y − x ) ( z − x ) ( y − z ) attain its maximum when y − x and z − x are maximized? What if there was an x slightly bigger than 0 such that those two expressions are made a little smaller but in turn y − z can be made bigger, making the entire expression bigger?
My concern is that the step was not rigorous enough.
How you can directly tell that you have to take x=0 for maximization. The logic is not at all correct. Why can't i maximize x-y, x-z, and y-z simultaneously.
Consider the triangle with vertices ( x , x 2 ) , ( y , y 2 ) , and ( z , z 2 ) . Note that its medial triangle maps to △ A B C through a homothety with a factor of 2 w.r.t the origin, so our new triangle has the same area as △ A B C , so we can just look at this new triangle.
By the Shoelace theorem, we see that the area is [ A B C ] = 2 1 ∣ ∣ ∣ ∣ ∣ c y c ∑ x 2 y − c y c ∑ x y 2 ∣ ∣ ∣ ∣ ∣ which factors as 2 1 ∣ ( x − y ) ( y − z ) ( x − z ) ∣ Now note that y ≥ x ≥ z and x ≥ y ≥ z are equivalent because of the absolute value, so WLOG x ≥ y ≥ z which means the expression is positive and we just need to maximize 2 1 ( x − y ) ( y − z ) ( x − z ) . Applying BW let y = z + u and x = z + u + v where z , u , v are non-negative reals so our question is: given 3 z + 2 u + v = 1 maximize 2 1 u v ( u + v ) Clearly then we must have z = 0 and thus v = 1 − 2 u and we want to maximize 2 1 u ( 1 − 2 u ) ( 1 − u ) given 0 ≤ u ≤ 2 1 But taking a derivative gives that the maximum happens at 2 1 u ( 1 − 2 u ) ( 1 − u ) = 1 2 3 1 and we're done.
Problem Loading...
Note Loading...
Set Loading...
First look at cases where x = y , y = z , x = z , or x = y = z . The triangle Δ A B C is a line or a point and has an area of zero. This would be the minimum area so to get the maximum area x = y = z . We then restrict x , y and z to the following: 0 ≤ x < y < z ≤ 1 .
We can then graph points A , B and C on a graph with axes u and v with general points ( u , v ) . u being the horizontal axis and v being the vertical axis.
Point A is at ( x + y , x 2 + y 2 ) , Point B is at ( x + z , x 2 + z 2 ) , and Point C is at ( y + z , y 2 + z 2 ) .
If we extend a horizontal line at v = x 2 + y 2 . It intersects u = x + z and u = y + z at point B ′ and C ′ respectively.
If we extend a horizontal line at v = x 2 + z 2 it intersects u = y + z at Point C ′ ′ .
B ′ = ( x + z , x 2 + y 2 )
C ′ = ( y + z , x 2 + y 2 )
C ′ ′ = ( y + z , x 2 + z 2 )
Δ A B B ′ , Δ B C C ′ ′ and Δ A C C ′ ′ all form right triangles. B B ′ C ′ C ′ ′ forms a rectangle.
The area of Δ A B C is ∣ Δ A C C ′ ′ − Δ A B B ′ − Δ B C C ′ ′ − B B ′ C ′ C ′ ′ ∣ . It is absolute value since Point B can lie above or below the line segment A C
Δ A C C ′ ′ = 2 ( y 2 + z 2 − ( x 2 + y 2 ) ) ( y + z − ( x + y ) ) = 2 ( z 2 − x 2 ) ( z − x )
Δ A B B ′ = 2 ( x 2 + z 2 − ( x 2 + y 2 ) ) ( x + z − ( x + y ) ) = 2 ( z 2 − y 2 ) ( z − y )
Δ B C C ′ ′ = 2 ( y 2 + z 2 − ( x 2 + z 2 ) ) ( y + z − ( x + z ) ) = 2 ( y 2 − x 2 ) ( y − x )
B B ′ C ′ C ′ ′ = ( x 2 + z 2 − ( x 2 + y 2 ) ) ( y + z − ( x + z ) ) = ( z 2 − y 2 ) ( y − x ) .
We get rid of the absolute value sign and just look for most positive or negative value of Δ A C C ′ ′ − Δ A B B ′ − Δ B C C ′ ′ − B B ′ C ′ C ′ ′ .
= Δ A C C ′ ′ − Δ A B B ′ − Δ B C C ′ ′ − B B ′ C ′ C ′ ′
= 2 ( z 2 − x 2 ) ( z − x ) − 2 ( z 2 − y 2 ) ( z − y ) − 2 ( y 2 − x 2 ) ( y − x ) − ( z 2 − y 2 ) ( y − x )
= 2 ( z 2 − x 2 ) ( z − x ) − 2 ( z 2 − y 2 ) ( z − y ) − 2 ( z 2 − y 2 ) ( y − x ) − 2 ( y 2 − x 2 ) ( y − x ) − 2 ( z 2 − y 2 ) ( y − x )
Factoring yields
= 2 ( z 2 − x 2 ) ( z − x ) − 2 ( z 2 − y 2 ) ( z − y + y − x ) − 2 ( y 2 − x 2 + z 2 − y 2 ) ( y − x )
= 2 ( z 2 − x 2 ) ( z − x ) − 2 ( z 2 − y 2 ) ( z − x ) − 2 ( z 2 − x 2 ) ( y − x )
= 2 ( ( z 2 − x 2 ) − ( z 2 − y 2 ) ) ( z − x ) − 2 ( z 2 − x 2 ) ( y − x )
= 2 ( y 2 − x 2 ) ( z − x ) − 2 ( z 2 − x 2 ) ( y − x )
= 2 ( y − x ) ( z − x ) ( y + x − ( z + x ) )
= 2 ( y − x ) ( z − x ) ( y − z ) .
So the area of Δ A B C is 2 ( y − x ) ( z − x ) ( y − z ) . First to maximize this you want to maximize y − x , and z − x . This can be done by making x = 0 .
So the area of Δ A B C is now 2 y z ( y − z ) with y + z = 1 . Substitute z for 1 − y .
Δ A B C = f ( y ) = 2 y ( 1 − y ) ( 2 y − 1 ) for 0 < y < 1 .
The maximum of this is when the derivative of f ( y ) equals zero.
f ′ ( y ) = − 3 y 2 + 3 y − 2 1 = 0 at y = 6 3 − 3 or 6 3 + 3 .
f ( 6 3 − 3 ) = − 1 2 3 1 .
f ( 6 3 + 3 ) = 1 2 3 1 .
This means that the maximum area of Δ A B C is 1 2 3 1 .
Thus a = 1 , b = 1 2 , c = 3 and a + b + c = 1 6