Inspired by me

Calculus Level 5

Let H n ( 3 ) = k = 1 n 1 k 3 \displaystyle { H }_{ n }^{ (3) }=\sum _{ k=1 }^{ n }{ \frac { 1 }{ { k }^{ 3 } } } . If n = 1 H n ( 3 ) n 2 \sum _{ n=1 }^{ \infty }{ \frac { { H }_{ n }^{ (3) } }{ n^{ 2 } } }

is in the form a ζ ( b ) c π d ζ ( f ) g \dfrac { a\zeta (b) }{ c } -\dfrac { \pi ^{ d }\zeta (f) }{ g }

for positive integers a , b , c , d , f a,b,c,d,f and g g where a a and c c are coprime, find a + b + c + d + f + g a+b+c+d+f+g .

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 30, 2016

The sum is n = 1 H n ( 3 ) n 2 = 1 + n = 1 H n + 1 ( 3 ) ( n + 1 ) 2 = 1 + n = 1 H n ( 3 ) ( n + 1 ) 2 + n = 1 1 ( n + 1 ) 5 = ζ ( 5 ) + σ h ( 3 , 2 ) \sum_{n=1}^\infty \frac{H_n^{(3)}}{n^2} \; = \; 1 + \sum_{n=1}^\infty \frac{H_{n+1}^{(3)}}{(n+1)^2} \; = \; 1 + \sum_{n=1}^\infty \frac{H_n^{(3)}}{(n+1)^2} + \sum_{n=1}^\infty \frac{1}{(n+1)^5} \; = \; \zeta(5) + \sigma_h(3,2) using the standard notation for the Euler sum σ h ( m , n ) = k = 1 ( j = 1 k 1 j m ) 1 ( k + 1 ) n = k = 1 H k ( m ) ( k + 1 ) n . \sigma_h(m,n) \; = \; \sum_{k=1}^\infty \left(\sum_{j=1}^k \frac{1}{j^m}\right)\frac{1}{(k+1)^n} \; =\; \sum_{k=1}^\infty \frac{H_k^{(m)}}{(k+1)^n} \;. Now standard results tell us that σ h ( 3 , 2 ) = 9 2 ζ ( 5 ) 2 ζ ( 2 ) ζ ( 3 ) \sigma_h(3,2) \; = \; \tfrac92\zeta(5) - 2\zeta(2)\zeta(3) and hence the sum is n = 1 H n ( 3 ) n 2 = 11 2 ζ ( 5 ) 2 ζ ( 2 ) ζ ( 3 ) = 11 2 ζ ( 5 ) 1 3 π 2 ζ ( 3 ) \sum_{n=1}^\infty \frac{H_n^{(3)}}{n^2} \; = \; \tfrac{11}{2}\zeta(5) - 2\zeta(2)\zeta(3) \; = \; \tfrac{11}{2}\zeta(5) - \tfrac13\pi^2\zeta(3) making the answer 11 + 5 + 2 + 2 + 3 + 3 = 26 11+5+2+2+3+3 = \boxed{26} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...