Inspired by MIT Problem (III)

Calculus Level 2

Given that: { x + sin y = 2018 x + 2018 cos y = 2017 \large {\begin{cases} x+\sin y =2018\\ x+2018 \cos y=2017 \end{cases}}

where 0 y π 2 0\le y \le \frac{\pi}{2} . Find the value of x + y x+y .

2016 + π 2 2016+\frac{\pi}{2} 2020 + π 2 2020+\frac{\pi}{2} 2018 + π 2 2018+\frac{\pi}{2} 2017 + π 2 2017+\frac{\pi}{2} 2019 + π 2 2019+\frac{\pi}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Half Angle Tangent Substitution

{ x + sin y = a . . . ( 1 ) x + a cos y = a 1 . . . ( 2 ) where a = 2018 \begin{cases} x + \sin y = a & ...(1) \\ x + a\cos y = a-1 &...(2) \end{cases} \quad \small \color{#3D99F6} \text{where }a = 2018

( 1 ) ( 2 ) : sin y a cos y = 1 Let t = tan y 2 2 t 1 + t 2 a ( 1 t 2 ) 1 + t 2 = 1 Multiply both sides by 1 + t 2 2 t a + a t 2 = 1 + t 2 ( a 1 ) t 2 + 2 t a 1 = 0 ( ( a 1 ) t + a + 1 ) ( t 1 ) = 0 t = tan y 2 = 1 For 0 y π 2 , tan y 2 > 0 y 2 = π 4 Putting y = π 2 in (2). x + 0 = a 1 = 2017 \begin{aligned} (1) - (2): \quad \sin y - a \cos y & = 1 & \small \color{#3D99F6} \text{Let }t = \tan \frac y2 \\ \frac {2t}{1+t^2} - \frac {a(1-t^2)}{1+t^2} & = 1 & \small \color{#3D99F6} \text{Multiply both sides by }1+t^2 \\ 2t - a + at^2 & = 1 + t^2 \\ (a-1)t^2 + 2t - a-1 & = 0 \\ ((a-1)t + a+1)(t-1) & = 0 \\ t & = \tan \frac y2 = 1 & \small \color{#3D99F6} \text{For }0 \le y \le \frac \pi 2, \ \tan \frac y2 > 0 \\ \frac y 2 & = \frac \pi 4 & \small \color{#3D99F6} \text{Putting }y = \frac \pi 2 \text{ in (2).} \\ x + 0 & = a - 1 = 2017 \end{aligned}

Therefore, x + y = 2017 + π 2 x+y = \boxed{2017+ \dfrac \pi 2} .

Hana Wehbi
Oct 2, 2018

Notice that all the answers indicate that y = π 2 cos y = 0 and sin y = 1 y=\frac{\pi}{2}\implies \cos y=0 \text{ and } \sin y= 1 , plugging those values in the two equations and solving for x x = 2017. x \implies x=2017.

Another Solution: subtracting the two equations will give ( sin y 2018 cos y = 1 ) (\sin y-2018\cos y= 1) , since 0 y π 2 0\le y \le \frac{\pi}{2} ; therefore, the maximum of y y is 1 and the minimum is 0 y = π 2 x = 2017. 0 \implies y=\frac{\pi}{2} \implies x=2017.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...