Triple Triple Angle Identity

Geometry Level 5

sin ( 9 x ) 3 sin ( 3 x ) = ( 1 sin 2 ( x ) sin 2 ( p ) ) ( 1 sin 2 ( x ) sin 2 ( q ) ) ( 1 sin 2 ( x ) sin 2 ( r ) ) \dfrac{\sin(9x)}{3\sin(3x)} = \left(1 - \frac{\sin^2(x)}{\sin^2(p)}\right)\left(1 - \frac{\sin^2(x)}{\sin^2(q)}\right)\left(1 - \frac{\sin^2(x)}{\sin^2(r)}\right)

Above shows a trigonometric identity with constants p , q p,q and r r such that 0 p , q , r π 2 0 \leq p,q,r\leq \frac \pi2 . If p + q + r = A B π p + q + r = \dfrac AB \pi for coprime positive integers A A and B B , find the value of A + B A+B .

Bonus : Generalize the trigonometric identity.


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ishan Singh
Sep 26, 2015

Proposition : k = 1 n ( 1 sin 2 ( θ ) sin 2 ( k π 2 n + 1 ) ) = sin ( ( 2 n + 1 ) θ ) ( 2 n + 1 ) sin ( θ ) \prod_{k=1}^n \left(1 -\dfrac{\sin^2(\theta)}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \right) = \dfrac{\sin((2n+1)\theta)}{(2n+1)\sin(\theta)}

Proof : First, consider the following Lemma,

Lemma :

k = 1 n sin 2 ( k π 2 n + 1 ) = 2 n + 1 2 2 n \prod_{k=1}^{n} \sin^2 \left(\dfrac{k\pi}{2n+1}\right) = \dfrac{2n+1}{2^{2n}}

Proof : Note that,

k = 1 2 n sin ( k π 2 n + 1 ) = k = 1 n sin ( k π 2 n + 1 ) k = n + 1 2 n sin ( k π 2 n + 1 ) \displaystyle \prod_{k=1}^{2n} \sin \left(\dfrac{k\pi}{2n+1}\right) = \prod_{k=1}^{n} \sin \left(\dfrac{k\pi}{2n+1}\right) \cdot \prod_{k=n+1}^{2n} \sin \left(\dfrac{k\pi}{2n+1}\right)

= k = 1 n sin ( k π 2 n + 1 ) k = 1 n sin ( ( n + k ) π 2 n + 1 ) \displaystyle = \prod_{k=1}^{n} \sin \left(\dfrac{k\pi}{2n+1}\right) \cdot \prod_{k=1}^{n} \sin \left(\dfrac{(n+k)\pi}{2n+1}\right)

= k = 1 n sin ( k π 2 n + 1 ) k = 1 n sin ( k π 2 n + 1 ) ( k = 1 n f ( k ) = k = 1 n f ( n + 1 k ) ) \displaystyle = \prod_{k=1}^{n} \sin \left(\dfrac{k\pi}{2n+1}\right) \cdot \prod_{k=1}^{n} \sin \left(\dfrac{k\pi}{2n+1}\right) \ \left(\because \prod_{k=1}^{n} f(k) = \prod_{k=1}^{n} f(n+1-k) \right)

= k = 1 n sin 2 ( k π 2 n + 1 ) \displaystyle = \prod_{k=1}^{n} \sin^2 \left(\dfrac{k\pi}{2n+1}\right)

But,

k = 1 2 n sin ( k π 2 n + 1 ) = 2 n + 1 2 2 n \displaystyle \prod_{k=1}^{2n} \sin \left(\dfrac{k\pi}{2n+1}\right) = \dfrac{2n+1}{2^{2n}} (For my proof of this, see here )

k = 1 n sin 2 ( k π 2 n + 1 ) = 2 n + 1 2 2 n \displaystyle \implies \prod_{k=1}^{n} \sin^2 \left(\dfrac{k\pi}{2n+1}\right) = \dfrac{2n+1}{2^{2n}}

Now, let P = ( 2 n + 1 ) sin ( θ ) k = 1 n ( 1 sin 2 ( θ ) sin 2 ( k π 2 n + 1 ) ) \displaystyle \text{P} = (2n+1)\sin(\theta) \prod_{k=1}^n \left(1 -\dfrac{\sin^2(\theta)}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \right)

= ( 2 n + 1 ) sin ( θ ) k = 1 n ( sin 2 ( k π 2 n + 1 ) sin 2 ( θ ) ) k = 1 n sin 2 ( k π 2 n + 1 ) \displaystyle = (2n+1)\sin(\theta) \dfrac{ \displaystyle \prod_{k=1}^n \left( \sin^2\left(\frac{k\pi}{2n+1}\right) - \sin^2(\theta) \right)}{ \displaystyle \prod_{k=1}^{n} \sin^2\left(\frac{k\pi}{2n+1}\right) }

= 2 2 n sin ( θ ) k = 1 n ( cos 2 ( θ ) cos 2 ( k π 2 n + 1 ) ) \displaystyle = 2^{2n} \sin(\theta) \prod_{k=1}^n \left( \cos^2(\theta) - \cos^2\left(\frac{k\pi}{2n+1}\right) \right) (Using the Lemma)

= 2 2 n sin ( θ ) ( k = 1 n ( cos ( θ ) + cos ( k π 2 n + 1 ) ) ) ( k = 1 n ( cos ( θ ) cos ( k π 2 n + 1 ) ) ) \displaystyle = 2^{2n} \sin(\theta) \left(\prod_{k=1}^n \left( \cos (\theta) + \cos \left(\frac{k\pi}{2n+1}\right) \right)\right) \cdot \left( \prod_{k=1}^n \left( \cos(\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right) \right)

= 2 2 n sin ( θ ) ( k = 1 n ( cos ( θ ) cos ( ( 2 n + 1 k ) π 2 n + 1 ) ) ) ( k = 1 n ( cos ( θ ) cos ( k π 2 n + 1 ) ) ) ( cos ( π x ) = cos x ) \displaystyle = 2^{2n} \sin(\theta) \left(\prod_{k=1}^n \left( \cos (\theta) - \cos \left(\frac{(2n+1 - k)\pi}{2n+1}\right) \right)\right) \cdot \left( \prod_{k=1}^n \left( \cos(\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right) \right) \ \left(\because \cos (\pi -x) = -\cos x \right)

= 2 2 n sin ( θ ) ( k = 1 n ( cos ( θ ) cos ( ( n + k ) π 2 n + 1 ) ) ) ( k = 1 n ( cos ( θ ) cos ( k π 2 n + 1 ) ) ) ( k = 1 n f ( k ) = k = 1 n f ( n + 1 k ) ) \displaystyle = 2^{2n} \sin(\theta) \left(\prod_{k=1}^n \left( \cos (\theta) - \cos \left(\frac{(n + k)\pi}{2n+1}\right) \right)\right) \cdot \left( \prod_{k=1}^n \left( \cos(\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right) \right) \ \left(\because \prod_{k=1}^{n} f(k) = \prod_{k=1}^{n} f(n+1-k) \right)

= 2 2 n sin ( θ ) ( k = n + 1 2 n ( cos ( θ ) cos ( k π 2 n + 1 ) ) ) ( k = 1 n ( cos ( θ ) cos ( k π 2 n + 1 ) ) ) \displaystyle = 2^{2n} \sin(\theta) \left(\prod_{k=n+1}^{2n} \left( \cos (\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right)\right) \cdot \left( \prod_{k=1}^n \left( \cos(\theta) - \cos \left(\frac{ k \pi}{2n+1}\right) \right) \right)

= 2 2 n sin ( θ ) k = 1 2 n ( cos ( θ ) cos ( k π 2 n + 1 ) ) \displaystyle = 2^{2n} \sin(\theta) \prod_{k=1}^{2n} \left( \cos (\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right)

Also,

U n ( x ) = 2 n k = 1 n ( x cos ( k π n + 1 ) ) \displaystyle U_{n} (x) = 2^{n} \prod_{k=1}^{n} \left(x - \cos \left(\frac{k\pi}{n+1}\right) \right)

where U n ( x ) \displaystyle U_{n} (x) denotes the Chebyshev Polynomial of the Second kind.

P = 2 2 n sin ( θ ) 2 2 n U 2 n ( cos θ ) \displaystyle \implies \text{P} = 2^{2n} \sin(\theta) \cdot 2^{-2n} \cdot U_{2n} (\cos \theta)

= sin ( ( 2 n + 1 ) θ ) ( U n ( cos θ ) = sin ( ( n + 1 ) θ ) sin θ ) \displaystyle = \sin ((2n+1) \theta) \ \left(\because U_{n} (\cos \theta) = \dfrac{\sin ((n+1) \theta)}{\sin \theta} \right)

Using this for sin ( 9 x ) \sin (9x) and sin ( 3 x ) \sin (3x) , we get,

p + q + r = 7 π 9 \displaystyle p + q + r = \dfrac{7\pi}{9}

A + B = 16 \implies A + B = \boxed{16}


Bonus : We can also use this identity to prove Euler's infinite product for sin x x \dfrac{\sin x}{x}

In the above proposition, set ( 2 n + 1 ) θ = x (2n+1)\theta = x such that x x is a constant.

sin x = ( 2 n + 1 ) sin ( x 2 n + 1 ) k = 1 n ( 1 sin 2 ( x 2 n + 1 ) sin 2 ( k π 2 n + 1 ) ) \displaystyle \implies \sin x = (2n+1)\sin \left( \frac{x}{2n+1} \right) \prod_{k=1}^n \left(1 -\dfrac{\sin^2 \left( \frac{x}{2n+1} \right)}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \right)

Taking lim n \displaystyle \lim_{n \to \infty} and noting that x x is a constant, we get,

sin x x = k = 1 ( 1 x 2 ( k π ) 2 ) \displaystyle \dfrac{\sin x}{x} = \prod_{k=1}^{\infty} \left( 1 - \dfrac{x^2}{(k\pi)^{2}}\right)

Yup, that was my solution too. Actually you are using the Chebyshev Polynomials of the First Kind (in terms of cos θ \cos \theta ).

For the proof of the product of sin, (one of) my favorite approaches is to use the Chebyshev polynomials of the second kind, and observe what happens to the constant term. Basically, we are saying that U 2 n + 1 ( 0 ) = 2 n + 1 U_{2n+1} ( 0 ) = 2n+1 , which follows immediately from the functional equation form, which makes it a surprising result.

Calvin Lin Staff - 5 years, 8 months ago
João Bento
Sep 19, 2015

Solution in portuguese:

Fazendo f ( x ) = ( 1 sin 2 ( x ) s i n 2 ( p ) ) . ( 1 sin 2 ( x ) s i n 2 ( q ) ) . ( 1 sin 2 ( x ) s i n 2 ( r ) ) f(x) = (1 - \frac{\sin^{2} (x)}{sin^{2} (p)}).(1 - \frac{\sin^{2} (x)}{sin^{2} (q)}).(1 - \frac{\sin^{2} (x)}{sin^{2} (r)}) , temos f ( p ) = f ( q ) = f ( r ) = 0 f(p) = f(q) = f(r) = 0 . Pela identidade, podemos escrever:

f ( x ) = sin ( 9 x ) 3 sin ( 3 x ) f(x) = \frac{\sin (9x)}{3 \sin (3x)} .

Em que s e n ( 3 x ) 0 sen(3x) ≠ 0 , ou seja, x k π 3 x ≠ \frac{kπ}{3} . ( I ) (I)

Fazendo f ( x ) = 0 f(x) = 0 , encontramos como raízes dentro da condição anterior ( I ) (I) x = k π 9 x = \frac{kπ}{9} , onde k não é múltiplo de 3. Desta forma, p, q e r são também escritos nesse formato, mas obedecendo o fato de que p , q , r [ 0 , π / 2 [ p, q, r ∈ [0, π/2[ . Sendo assim, temos π 9 , 2 π 9 , 3 π 9 e 4 π 9 \frac{π}{9}, \frac{2π}{9}, \frac{3π}{9} e \frac{4π}{9} como possíveis soluções, mas pela condição ( I ) (I) , temos 3 π 9 \frac{3π}{9} como uma solução inválida, restando ( p , q , r ) = ( π 9 , 2 π 9 , 4 π 9 ) (p, q, r) = (\frac{π}{9}, \frac{2π}{9}, \frac{4π}{9}) , mas não necessariamente nesta ordem. Finalmente,

p + q + r = 7 π 9 p + q + r = \frac{7π}{9} .

Logo A = 7 A = 7 e B = 9 B = 9 , resultando A + B = 7 + 9 = 16 A + B = 7 + 9 = 16 .

Google Translate:

Solution in portuguese:

Making f ( x ) = ( 1 sin 2 ( x ) sin 2 ( p ) ) ( 1 sin 2 ( x ) sin 2 ( q ) ) ( 1 sin 2 ( x ) sin 2 ( r ) ) f (x) = (1 - \frac {\sin^2 (x)} {\sin^2 (p)}) (1 - \frac {\sin^2 (x)} {\sin^2 (q)}) (1 - \frac{\sin^2 {(x)}}{ {\sin^2 (r)}}) we f ( p ) = f ( q ) = f ( r ) = 0 f (p) = f (q) = f (r) = 0 . The identity, we can write:

f ( x ) = sin ( 9 x ) 3 sin ( 3 x ) f (x) = \frac {\sin (9x)} {3\sin (3x)} .

When sin ( 3 x ) 0 \sin (3x) \ne 0 , ie x k π 3 x \ne \frac {k\pi} {3} . ( R ) (\mathbb R)

Making f ( x ) = 0 f (x) = 0 , as found in the roots previous condition ( R ) (\mathbb R) x = k π 9 x = \frac {k \pi} {9} , where k is not a multiple of 3. This shape, p, q and r are also written in this format, but the fact that obeying p , q , r [ 0 , π / 2 [ p, q, r \in [0, \pi / 2 [ . Thus, we have π 9 , 2 π 9 , 3 π 9 \frac {\pi} {9}, \frac {2\pi} {9}, \frac {3\pi} {9} and 4 π 9 \frac {4\pi} {9} as possible solutions, but the condition ( r ) (r) we 3 π 9 \frac {3\pi} {9} as an invalid solution, leaving ( p , q , r ) = ( π 9 , 2 π 9 , 4 π 9 ) (p, q, r) = (\frac {\pi} {9}, \frac {2\pi} {9}, \frac {4\pi} {9}) , but not necessarily in that order. At least,

p + q + r = 7 π 9 p + q + r = \frac {7π} {9} .

Therefore A = 7 A = 7 and B = 9 B = 9 , resulting A + B = 7 + 9 = 16 A + B = 7 + 9 = 16 .

Pi Han Goh - 5 years, 8 months ago

I don't know if this solution is 100% correct, also there is a much faster way to only get the answer, but here it goes the process of the derivation of the identity if we don't know its form:

First let's solve sin ( 9 x ) 3 sin ( 3 x ) = 0 \dfrac{\sin(9x)}{3\sin(3x)}=0 . Clearly sin ( 9 x ) = 0 \sin(9x)=0 produces the solutions x = 4 0 k x=40^\circ k and x = 2 0 + 4 0 k x=20^\circ+40^\circ k , and 3 sin ( 3 x ) = 0 3\sin(3x)=0 produces x = 12 0 k x=120^\circ k and x = 6 0 + 12 0 k x=60^\circ+120^\circ k . We need to exclude these solutions, because they make the denominator 0 0 .

So, the solutions are: x = 4 0 k x=40^\circ k and x = 2 0 + 4 0 k x=20^\circ+40^\circ k where x x is not a multiple of 3 3^\circ .

The next step is to find all the different sines that we can make with all the solutions, and they are: sin ( 2 0 ) \sin(20^\circ) , sin ( 4 0 ) \sin(40^\circ) , sin ( 8 0 ) \sin(80^\circ) , sin ( 20 0 ) \sin(200^\circ) , sin ( 22 0 \sin(220^\circ ) and sin ( 26 0 ) \sin(260^\circ) .

Hence, we can factorize the initial expression in this way:

sin ( 9 x ) 3 sin ( 3 x ) = a ( sin ( x ) sin ( 2 0 ) ) ( sin ( x ) sin ( 4 0 ) ) ( sin ( x ) sin ( 8 0 ) ) ( sin ( x ) sin ( 20 0 ) ) ( sin ( x ) sin ( 22 0 ) ) ( sin ( x ) sin ( 26 0 ) ) \dfrac{\sin(9x)}{3\sin(3x)}=a(\sin(x)-\sin(20^\circ))(\sin(x)-\sin(40^\circ))(\sin(x)-\sin(80^\circ))(\sin(x)-\sin(200^\circ))(\sin(x)-\sin(220^\circ))(\sin(x)-\sin(260^\circ))

Note that sin ( 20 0 ) = sin ( 2 0 ) \sin(200^\circ)=-\sin(20^\circ) , sin ( 22 0 ) = sin ( 4 0 ) \sin(220^\circ)=-\sin(40^\circ) and sin ( 26 0 ) = sin ( 8 0 ) \sin(260^\circ)=-\sin(80^\circ) , hence:

sin ( 9 x ) 3 sin ( 3 x ) = a ( sin 2 ( x ) sin 2 ( 2 0 ) ) ( sin 2 ( x ) sin 2 ( 4 0 ) ) ( sin 2 ( x ) sin 2 ( 8 0 ) ) \dfrac{\sin(9x)}{3\sin(3x)}=a(\sin^2(x)-\sin^2(20^\circ))(\sin^2(x)-\sin^2(40^\circ))(\sin^2(x)-\sin^2(80^\circ))

sin ( 9 x ) 3 sin ( 3 x ) = a sin 2 ( 2 0 ) sin 2 ( 4 0 ) sin 2 ( 8 0 ) ( 1 sin 2 ( x ) sin 2 ( 2 0 ) ) ( 1 sin 2 ( x ) sin 2 ( 4 0 ) ) ( 1 sin 2 ( x ) sin 2 ( 8 0 ) ) \dfrac{\sin(9x)}{3\sin(3x)}=-a\sin^2(20^\circ)\sin^2(40^\circ)\sin^2(80^\circ)\left(1-\dfrac{\sin^2(x)}{\sin^2(20^\circ)}\right)\left(1-\dfrac{\sin^2(x)}{\sin^2(40^\circ)}\right)\left(1-\dfrac{\sin^2(x)}{\sin^2(80^\circ)}\right)

Now, note that sin ( 6 0 ) = 3 t 4 t 3 \sin(60^\circ)=3t-4t^3 has solutions t = sin ( 2 0 ) , sin ( 4 0 ) , sin ( 8 0 ) t=\sin(20^\circ),\sin(40^\circ),-\sin(80^\circ) . If we let y = t 2 y=t^2 , then t = y t=\sqrt{y} and:

sin ( 6 0 ) = 3 y 4 y y sin ( 6 0 ) = y ( 3 4 y ) sin 2 ( 6 0 ) = y ( 3 4 y ) 2 \sin(60^\circ)=3\sqrt{y}-4y\sqrt{y} \implies \sin(60^\circ)=\sqrt{y}(3-4y) \implies \sin^2(60^\circ)=y(3-4y)^2

After simplifying we get: 64 y 3 96 y 2 + 36 y 3 = 0 64y^3-96y^2+36y-3=0 , which has roots y = sin 2 ( 2 0 ) , sin 2 ( 4 0 ) , sin 2 ( 8 0 ) y=\sin^2(20^\circ),\sin^2(40^\circ),\sin^2(80^\circ) .

Hence, by the factor theorem: 64 y 3 96 y 2 + 36 y 3 = 64 ( y sin 2 ( 2 0 ) ) ( y sin 2 ( 4 0 ) ) ( y sin 2 ( 8 0 ) ) 64y^3-96y^2+36y-3=64(y-\sin^2(20^\circ))(y-\sin^2(40^\circ))(y-\sin^2(80^\circ))

Now, to find a a let x = 3 0 x=30^\circ :

1 3 = a ( 1 / 4 sin 2 ( 2 0 ) ( 1 / 4 sin 2 ( 4 0 ) ( 1 / 4 sin 2 ( 8 0 ) ) -\dfrac{1}{3}=a(1/4-\sin^2(20^\circ)(1/4-\sin^2(40^\circ)(1/4-\sin^2(80^\circ))

1 3 = a 64 ( 1 / 4 ) 3 96 ( 1 / 4 ) 2 + 36 ( 1 / 4 ) 3 64 = a 64 -\dfrac{1}{3}=a\dfrac{64(1/4)^3-96(1/4)^2+36(1/4)-3}{64}=\dfrac{a}{64}

Hence, a = 64 3 a=-\dfrac{64}{3} . By Vieta's formulas, sin 2 ( 2 0 ) sin 2 ( 4 0 ) sin 2 ( 8 0 ) = 3 64 \sin^2(20^\circ)\sin^2(40^\circ)\sin^2(80^\circ)=\dfrac{3}{64}

Finally, our identity is:

sin ( 9 x ) 3 sin ( 3 x ) = ( 1 sin 2 ( x ) sin 2 ( 2 0 ) ) ( 1 sin 2 ( x ) sin 2 ( 4 0 ) ) ( 1 sin 2 ( x ) sin 2 ( 8 0 ) ) \dfrac{\sin(9x)}{3\sin(3x)}=\left(1-\dfrac{\sin^2(x)}{\sin^2(20^\circ)}\right)\left(1-\dfrac{\sin^2(x)}{\sin^2(40^\circ)}\right)\left(1-\dfrac{\sin^2(x)}{\sin^2(80^\circ)}\right)

On comparing we get p = π 9 p=\dfrac{\pi}{9} , q = 2 π 9 q=\dfrac{2\pi}{9} and r = 4 π 9 r=\dfrac{4\pi}{9} . So, p + q + r = 7 π 9 p+q+r=\dfrac{7\pi}{9} , and A + B = 16 A+B=\boxed{16} .

Correct. This question came from the identity

sin ( ( 2 n + 1 ) θ ) = ( 2 n + 1 ) sin ( θ ) k = 1 n ( 1 sin 2 ( θ ) sin 2 ( k π 2 n + 1 ) ) \sin((2n+1)\theta) = (2n+1)\sin(\theta) \prod_{k=1}^n \left(1 -\dfrac{\sin^2(\theta)}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \right)

Which I still can't prove yet.

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh Where did you get this identity from? Do you have other such marvelous identities? If so, can you post them or give a reference?

Samuel Jones - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...