Inspired by Nihar

Algebra Level 3

Let a a and b b with a > b > 0 a>b>0 be real numbers satisfying a 2 + b 2 = 4 a b a^2+b^2=4ab . Find a b b a \dfrac{\sqrt{a}}{\sqrt{b}} - \dfrac{\sqrt{b}}{\sqrt{a}} .

Give your answer to 3 decimal places.


Inspiration .

This question is part of the set All-Zebra


The answer is 1.414.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Abhay Tiwari
May 3, 2016

( a b ) 2 = a 2 + b 2 2 a b (a-b)^{2}=a^{2}+b^{2}-2ab

( a b ) 2 = 4 a b 2 a b (a-b)^{2}=4ab-2ab

( a b ) 2 = 2 a b (a-b)^{2}=2ab

( a b ) = 2 a b (a-b)=\sqrt{2ab}

a b b a = 2 = 1.414 \large \frac{\sqrt{a}}{\sqrt{b}} - \frac{\sqrt{b}}{\sqrt{a}}=\sqrt{2}=\boxed{1.414}

A simple solution !!! I did it the same way.

abc xyz - 5 years, 1 month ago
Joshua Chin
May 3, 2016

As a > b > 0 a>b>0 then 4 a b 0 4ab\neq 0 . Thus we can divide throughout by 4 a b 4ab and get a 2 + b 2 4 a b = 1 \frac{a^2+b^2}{4ab}=1 . This gives a 2 + b 2 a b = 4 \frac{a^2+b^2}{ab}=4 and a b + b a = 4 \frac{a}{b}+\frac{b}{a}=4

a b 2 + b a = 2 \frac{a}{b}-2+\frac{b}{a}=2

( a b b a ) 2 = 2 { (\frac { \sqrt { a } }{ \sqrt { b } } -\frac { \sqrt { b } }{ \sqrt { a } } ) }^{ 2 }=2

a b b a = ± 2 { \frac { \sqrt { a } }{ \sqrt { b } } -\frac { \sqrt { b } }{ \sqrt { a } } }=\pm \sqrt { 2 }

But as a > b a>b , a b > b a \frac { \sqrt { a } }{ \sqrt { b } } >\frac { \sqrt { b } }{ \sqrt { a } } and thus a b b a = 2 1.414 { \frac { \sqrt { a } }{ \sqrt { b } } -\frac { \sqrt { b } }{ \sqrt { a } } }=\sqrt { 2 } { \approx 1.414 }

Moderator note:

Great observation!

a 2 + b 2 = 4 a b \Rightarrow a^2+b^2=4ab

( a b ) 2 + 2 a b = 4 a b (a-b)^2+2ab=4ab

( a b ) 2 = 2 a b (a-b)^2=2ab

Wee need to find:

a b b a = a b a b = x \dfrac{\sqrt{a}}{\sqrt{b}} - \dfrac{\sqrt{b}}{\sqrt{a}}=\dfrac{a-b}{\sqrt{ab}}=x

Squring both sides.

( a b ) 2 a b = x 2 \dfrac{(a-b)^2}{ab}=x^2

2 a b a b = x 2 \dfrac{2ab}{ab}=x^2

x = 2 1.414 \therefore x=\sqrt{2}\approx{\boxed{1.414}}

Let b a = x \dfrac{b}{a} = x
1 + x 2 = 4 x 1 + x^{2} = 4x
x = 2 ± 3 \therefore x = 2 \pm \sqrt{3}
But, since a b , x < 1 x = 2 3 a \ge b , x < 1 \to x = 2 - \sqrt{3}
a b b a = 2 + 3 2 3 = 1 2 ( ( 3 + 1 ) 2 ( 3 1 ) 2 ) = 2 \sqrt{\dfrac{a}{b}} - \sqrt{\dfrac{b}{a}} = \sqrt{2+\sqrt{3}} - \sqrt{2-\sqrt{3}}= \dfrac{1}{\sqrt{2}} \cdot \left( \sqrt{(\sqrt{3}+1)^{2}} - \sqrt{(\sqrt{3}-1)^{2}}\right) = \sqrt{2}



Moderator note:

Good observation of the simplification for the square roots.

Given that,

a 2 + b 2 = 4 a b a^{2} + b^{2} = 4ab

a 2 2 a b + b 2 = 2 a b \implies a^{2} -2ab + b^{2} = 2ab

( a b ) 2 = 2 a b \implies (a-b)^{2} = 2ab

( a b ) = 2 a b \implies (a-b) = \sqrt{2ab}

Now, a b b a = a b a b = 2 a b a b = 2 × a b a b = 2 1.414 \frac{\sqrt{a}}{\sqrt{b}} - \frac{\sqrt{b}}{\sqrt{a}} = \frac{a-b}{\sqrt{ab}} = \frac{\sqrt{2ab}}{\sqrt{ab}} = \frac{\sqrt{2} \times \sqrt{ab}}{\sqrt{ab}} = \sqrt{2} ≈ \boxed{1.414}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...