Inspired by Nihar Mahajan

Geometry Level 5

Let Δ A B C \color{#624F41}{\Delta ABC} be a triangle with side A B = 12 , B C = 4 5 & A C = 8 2 \color{#D61F06}{AB = 12,} ~\color{#3D99F6}{BC=4\sqrt{5}}~ \& ~ \color{#EC7300}{AC = 8\sqrt{2}} .

Also let P , Q & R \color{grey}{P,~Q~\& ~R} be the points on side A B , B C & C A \color{#302B94}{AB,~BC~ \& ~ CA} respectively such that perimeter of Δ P Q R \color{#20A900}{\Delta PQR} is minimum.

Find the inradius of Δ P Q R \color{#20A900}{\Delta PQR} .

Note: The picture is not drawn up to scale.

This problem is created by me.


The answer is 1.2648.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nihar Mahajan
Apr 7, 2015

H H is the Orthocenter of ABC

Well , This is a pure geometry proof. I think the problem poser is inspired by this problem . The triangle with minimum perimeter is indeed the orthic triangle of Δ A B C \Delta ABC (this can be proved). Please revise the orthic configuration before seeing this proof , or you will not understand some steps.I t almost took 2 hours for me to solve and present the solution. Do upvote if you like.

First by Heron's formula we can compute that : A ( Δ A B C ) = 48 A(\Delta ABC) = 48

A ( Δ A B C ) = 1 2 ( A B ) ( P C ) = 1 2 ( 12 ) ( P C ) = 48 P C = 8 A C = 8 2 m C P A = 90 Δ C P A is a 45-45-90 triangle A P = 8 A(\Delta ABC) =\dfrac{1}{2}(AB)(PC) =\dfrac{1}{2}(12)(PC) = 48\\\Rightarrow PC=8 \quad AC=8\sqrt{2} \quad m\angle CPA=90\\ \Rightarrow \Delta CPA \quad\text{is a 45-45-90 triangle} \Rightarrow AP=8

By angle chase we also see that Δ C P A \Delta CPA is also a 45-45-90 triangle.

A R = 6 2 , P B = A B A P = 12 8 P B = 4 \Rightarrow AR = 6\sqrt{2} \quad,\quad PB = AB-AP=12-8 \Rightarrow PB =4 Also , R C = A C A R = 8 2 6 2 = 2 2 RC=AC-AR=8\sqrt{2}-6\sqrt{2}=2\sqrt{2}

By Pythagoras Theorem to Δ A B Q \Delta ABQ , we get B Q = 12 5 5 Q C = B C B Q = 4 5 12 5 5 Q C = 8 5 5 BQ=\dfrac{12\sqrt{5}}{5} \\ QC=BC-BQ=4\sqrt{5}-\dfrac{12\sqrt{5}}{5} \Rightarrow QC =\dfrac{8\sqrt{5}}{5}

Now since we have computed all the parts of sides of Δ A B C \Delta ABC ,we can use ratios and computations to get P Q , Q R , P R PQ,QR,PR .

Δ A P R Δ A C B A P A C = P R C B P R = 2 10 Δ B P Q Δ B C A B P B C = P Q C A P Q = 8 10 5 Δ C R Q Δ C B A C R B C = Q R B A Q R = 6 10 5 \Delta APR \sim \Delta ACB \Rightarrow \dfrac{AP}{AC}= \dfrac{PR}{CB}\Rightarrow PR = 2\sqrt{10} \\ \Delta BPQ \sim \Delta BCA \Rightarrow \dfrac{BP}{BC}= \dfrac{PQ}{CA} \Rightarrow PQ = \dfrac{8\sqrt{10}}{5}\\ \Delta CRQ \sim \Delta CBA \Rightarrow \dfrac{CR}{BC}= \dfrac{QR}{BA}\Rightarrow QR = \dfrac{6\sqrt{10}}{5}

For Δ P Q R \Delta PQR , semiperimeter s = 12 10 5 s=\dfrac{12\sqrt{10}}{5}

Also by heron's formula , we find A ( Δ P Q R ) = 48 5 A(\Delta PQR) = \dfrac{48}{5}

Hence , inradius r = A ( Δ P Q R ) s = 48 5 12 10 5 = 2 10 5 r=\dfrac{A(\Delta PQR)}{s} =\dfrac{\dfrac{48}{5}}{\dfrac{12\sqrt{10}}{5}} = \dfrac{2\sqrt{10}}{5}

r = 2 10 5 1.265 \Rightarrow\huge\boxed{\color{#3D99F6}{r= \dfrac{2\sqrt{10}}{5} \approx 1.265}}

Oh wow! I thought Coordinate Geometry is the only approach. This is terrific!

Pi Han Goh - 5 years, 4 months ago

Log in to reply

Thanks.

Lol , reviewing my old solutions huh? Please review my all 400 solutions :P :P :P

Nihar Mahajan - 5 years, 4 months ago

Log in to reply

Haha no, I'm going through a lot of old problems in my bookmark that I haven't had time to solve. You can go through mine as well! ahahahaha

Pi Han Goh - 5 years, 4 months ago

I am posting its solution using Coordinate Geometry and also looking forward for more different type of solution for this question.

Now coming to the solution,

c o s A = b 2 + c 2 a 2 2 b c = 128 + 144 80 2 × 8 2 × 12 = 1 2 A = 4 5 cosA = \dfrac{b^2+c^2-a^2}{2bc}= \dfrac{128+144-80}{2\times 8\sqrt{2} \times 12} = \dfrac{1}{\sqrt{2}} \\ \implies A = 45^{\circ}

Now let A A be origin. Then B ( 12 , 0 ) & C ( 8 , 8 ) B\equiv (12,0) ~\& ~C\equiv (8,8)

\therefore Line A C y = x AC\equiv ~ y=x & line B C 2 x + y = 24 BC\equiv ~ 2x+y=24

Let point P ( h , 0 ) P\equiv ~ (h,0) . We know that minimum perimeter of Δ P Q R \Delta PQR would be the distance between the images of point P P about line A C & B C AC~\&~BC .

Images of point P P about line A C & B C AC~\&~BC are D ( 0 , h ) & E ( 96 3 h 5 , 48 4 h 5 ) D\equiv (0,h)~ \&~ E\equiv~ \left( \dfrac { 96-3h }{ 5 } ,\dfrac { 48-4h }{ 5 } \right) respectively.

So length of D E = l = ( 96 3 h ) 2 25 + ( 48 9 h ) 2 25 l 2 = ( 96 3 h ) 2 25 + ( 48 9 h ) 2 25 2 l d l d h = 2 ( 96 3 h ) × ( 3 ) 25 + 2 ( 48 9 h ) × ( 9 ) 25 DE = l = \sqrt { \dfrac { { (96-3h) }^{ 2 } }{ 25 } +\dfrac { { (48-9h) }^{ 2 } }{ 25 } } \\ \implies ~ l^2 = \dfrac { { (96-3h) }^{ 2 } }{ 25 } +\dfrac { { (48-9h) }^{ 2 } }{ 25 } \\ \implies ~ 2l\dfrac{dl}{dh} = \dfrac { 2(96-3h)\times (-3) }{ 25 } +\dfrac { 2(48-9h)\times (-9) }{ 25 }

For l l to be minimum d l d h = 0 6 ( 96 3 h ) = 18 ( 48 9 h ) h = 8 \dfrac{dl}{dh} = 0 \\ \implies~ -6(96-3h) = 18(48-9h) \\ \therefore h = 8

P ( 8 , 0 ) , D ( 0 , 8 ) & E ( 14.4 , 3.2 ) \therefore ~ P\equiv (8,0),~ D\equiv (0,8)~\& ~E\equiv (14.4,3.2)

So line D E 3 y + x = 24 DE\equiv ~ 3y+x = 24 and points Q & R Q ~\& ~ R will be point of intersection of line D E DE with line B C & A C BC~\& ~AC respectively.

Q ( 9.6 , 4.8 ) & R ( 6 , 6 ) \therefore ~ Q\equiv(9.6,4.8)~\& ~ R\equiv(6,6)

Now, area of Δ P Q R = 1 2 × x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 = 9.6 \Delta PQR =\dfrac{1}{2} \times \begin{vmatrix} { x }_{ 1 } & { y }_{ 1 } & 1 \\ { x }_{ 2 } & { y }_{ 2 } & 1 \\ { x }_{ 3 } & y_{ 3 } & 1 \end{vmatrix} = 9.6

And semiperimeter( s s ) of Δ P Q R = l 2 = 15.18 2 = 7.59 \Delta PQR = \dfrac{l}{2} = \dfrac{15.18}{2} = 7.59

\therefore Inradius of Δ P Q R = Δ s = 9.6 7.59 1.265 \Delta PQR = \dfrac{\Delta}{s} = \dfrac{ 9.6}{7.59} \approx ~ 1.265

Well , I posted another method! ¨ \ddot\smile

Nihar Mahajan - 6 years, 2 months ago

Log in to reply

Thanks for your help. It is indeed a great solution.

Purushottam Abhisheikh - 6 years, 2 months ago

link text
link text
From the first link we get,
R = a b c 4 a r e a = a 2 + b 2 + c 2 8 ( 1 + C o s A C 0 s B C o s C ) O r t h i c P e d a l Δ h a s m i n i m u m p e r i m e t e r . F r o m s e c o n d . I n r a d i u s o f o r t h i c Δ = 2 R C o s A C o s B C o s C R = 4 5 8 2 12 ( 4 5 + 8 2 + 12 ) ( 4 5 + 8 2 12 ) ( 4 5 8 2 + 12 ) ( 4 5 + 8 2 + 12 ) 1 + C o s A C o s B C o s C = ( 4 5 ) 2 + ( 8 2 ) 2 + 1 2 2 8 R 2 I n r a d i u s o f o r t h i c Δ = 2 R { ( 4 5 ) 2 + ( 8 2 ) 2 + 1 2 2 8 R 2 1 } = 1.2649. R=\dfrac{abc}{4*area}\\ \ \ \ =\dfrac{a^2+b^2+c^2}{8(1+CosA*C0sB*CosC)}\\ Orthic\ Pedal\ \Delta\ has \ minimum\ perimeter. \therefore\ From\ second.\\ Inradius\ of\ orthic \ \Delta \ =2R*|CosA*CosB*CosC| \\ \therefore \ R=\dfrac{4\sqrt5*8\sqrt2*12}{\sqrt{(4\sqrt5+8\sqrt2+12)(4\sqrt5+8\sqrt2-12) (4\sqrt5-8\sqrt2+12) (-4\sqrt5+8\sqrt2+12) }}\\ 1+|CosA*CosB*CosC|=\dfrac{(4\sqrt5)^2+(8\sqrt2)^2+12^2}{8*R^2}\\ Inradius\ of\ orthic \ \Delta \ =2R\{\dfrac{(4\sqrt5)^2+(8\sqrt2)^2+12^2}{8*R^2} - 1\}=\Large \ \ \ \color{#D61F06}{1.2649}.


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...