Inspired by " Nothing to be confused here " Part 2

f ( x ) = x x x x x \large f(x) = x^{x^{x^{x^x}}}

For f ( x ) f(x) as defined above, find the remainder N N , when f ( 23 ) f ( 11 ) f(23)-f(11) is divided by 100 100 . Submit N \sqrt N .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We need to find ( f ( 23 ) f ( 11 ) ) m o d 100 = f ( 23 ) m o d 100 f ( 11 ) m o d 100 (f(23)-f(11)) \bmod 100 = f(23) \bmod 100 - f(11)\bmod 100 . Let us consider f ( 23 ) f(23) and f ( 11 ) f(11) separately.

Since gcd ( 23 , 100 ) = 1 \gcd(23, 100) = 1 , we can use Euler's theorem and Carmichael's lambda function λ ( ) \lambda (\cdot) . Note that λ ( 100 ) = 20 \lambda (100) = 20 and λ ( 20 ) = 4 \lambda (20) = 4 .

f ( 23 ) 2 3 2 3 2 3 2 3 23 m o d 4 m o d 20 (mod 100) 2 3 2 3 ( 24 1 ) 2 3 23 m o d 4 m o d 20 (mod 100) 2 3 2 3 3 m o d 20 (mod 100) 2 3 ( 20 + 3 ) 3 m o d 20 (mod 100) 2 3 7 (mod 100) 2 3 2 ( 20 + 3 ) 5 (mod 100) 529 ( 3 5 ) (mod 100) 29 ( 243 ) (mod 100) 47 (mod 100) \begin{aligned} f(23) & \equiv 23^{23^{23^{23^{23}} \bmod 4} \bmod 20} \text{ (mod 100)} \\ & \equiv 23^{23^{(24-1)^{23^{23}} \bmod 4} \bmod 20} \text{ (mod 100)} \\ & \equiv 23^{23^3 \bmod 20} \text{ (mod 100)} \\ & \equiv 23^{(20+3)^3 \bmod 20} \text{ (mod 100)} \\ & \equiv 23^7 \text{ (mod 100)} \\ & \equiv 23^2(20+3)^5 \text{ (mod 100)} \\ & \equiv 529(3^5) \text{ (mod 100)} \\ & \equiv 29(243) \text{ (mod 100)} \\ & \equiv 47 \text{ (mod 100)} \end{aligned}

Let n = 1 1 1 1 1 1 11 n = 11^{11^{11^{11}}} . Then

f ( 11 ) 1 1 n (mod 100) ( 10 + 1 ) n (mod 100) ( 1 0 n + 1 0 n 1 + + 100 n ( n 1 ) 2 + 10 n + 1 ) (mod 100) ( 0 + 0 + + 0 + 10 n + 1 ) (mod 100) Note that n ends with 1 10 + 1 11 (mod 100) \begin{aligned} f(11) & \equiv 11^n \text{ (mod 100)} \\ & \equiv (10+1)^n \text{ (mod 100)} \\ & \equiv \left(10^n + 10^{n-1} + \cdots + \frac {100n(n-1)}2 + 10n + 1\right) \text{ (mod 100)} \\ & \equiv \left(0 + 0 + \cdots + 0 + 10\blue n + 1\right) \text{ (mod 100)} & \small \blue{\text{Note that }n \text{ ends with 1}} \\ & \equiv 10 + 1 \equiv 11 \text{ (mod 100)} \end{aligned}

Therefore f ( 23 ) f ( 11 ) 47 11 36 (mod 100) f(23) - f(11) \equiv 47 - 11 \equiv 36 \text{ (mod 100)} N = 36 = 6 \implies \sqrt N = \sqrt{36} = \boxed 6 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...