Inspired by Ossama Ismail

10000 men are randomly arranged in an array of 100 rows and 100 columns.

Tallest among each row of all are asked to come out. And the shortest among them is A.

Similarly after resuming them to their original positions, the shortest among each column are asked to come out. And the tallest among them is B.

What can we say about the heights of A and B?


Inspiration

A < B A < B A = B A = B A > B A > B A B A \geq B A B A \leq B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pawan Kumar
Apr 13, 2015

For any m × n m \times n matrix A [ m ] [ n ] A[m][n] :

m a x ( R o w ) A 11 A 12 A 1 n m a x ( R 1 ) A 21 A 22 A 2 n m a x ( R 2 ) A r 1 A r 2 A r n m a x ( R r ) A m 1 A m 2 A m n m a x ( R m ) m i n ( C o l u m n ) m i n ( C 1 ) m i n ( C 2 ) m i n ( C n ) \begin{aligned} && && & & & & max(Row) \\ && A_{11} && A_{12} & \dots & A_{1n} & & max(R_1) \\ && A_{21} && A_{22} & \dots & A_{2n} & & max(R_2) \\ && && \dots & & & \\ && \color{#D61F06}{A_{r1}} && \color{#D61F06}{A_{r2}} & \color{#D61F06}{\dots} & \color{#D61F06}{A_{rn}} & & \color{#D61F06}{max(R_r)} \\ && && \dots & & & \\ && A_{m1} && A_{m2} & \dots & A_{mn} & & max(R_m) \\ && && \dots & & & \\ min(Column) && min(C_1) && min(C_2)& \dots & min(C_n) & \end{aligned}

Let m i n ( m a x ( R o w ) ) = m a x ( R r ) min(max(Row)) = max(R_r) .

Now, by definition

m i n ( C 1 ) A r 1 m a x ( R r ) m i n ( C 2 ) A r 2 m a x ( R r ) m i n ( C n ) A r n m a x ( R r ) \begin{aligned} min(C_1) \leq A_{r1} \leq max(R_r)\\ min(C_2) \leq A_{r2} \leq max(R_r)\\ \dots\\ min(C_n) \leq A_{rn} \leq max(R_r) \end{aligned}

m a x ( m i n ( C o l u m n ) ) m a x ( R r ) \Rightarrow max(min(Column)) \leq max(R_r)

m a x ( m i n ( C o l u m n ) ) m i n ( m a x ( R o w ) ) \Rightarrow max(min(Column)) \leq min(max(Row))

B A \Rightarrow B \leq A

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...