Inspired by Paola R

Algebra Level 4

Let a a and b b with a > b > 0 a>b>0 be real numbers satisfying a 2 + b 2 = 4 a b a^2+b^2=4ab . Find b a \dfrac{b}{a} .

Give your answer to 3 decimal places.


Inspiration .


The answer is 0.268.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Nihar Mahajan
May 2, 2016

Continuing @Paola Ramírez 's approach from inspiration problem:

( a + b ) 2 = a 2 + b 2 + 2 a b = 4 a b + 2 a b = 6 a b (a+b)^2=a^2+b^2+2ab=4ab+2ab=6ab

( a b ) 2 = a 2 + b 2 2 a b = 4 a b 2 a b = 2 a b (a-b)^2=a^2+b^2-2ab=4ab-2ab=2ab

Then, ( a + b ) 2 ( a b ) 2 = 6 a b 2 a b a + b a b = 3 \dfrac{(a+b)^2}{(a-b)^2}=\dfrac{6ab}{2ab} \Rightarrow \dfrac{a+b}{a-b}=\sqrt{3}

The above is Paola's solution and we continue with it by applying componendo and dividendo like this:

a + b a b = 3 1 a + b + a b a + b a + b = 3 + 1 3 1 \dfrac{a+b}{a-b}=\dfrac{\sqrt{3}}{1} \implies \dfrac{a+b+a-b}{a+b-a+b}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}

a b = ( 3 + 1 ) 2 ( 3 1 ) ( 3 + 1 ) = 3 + 1 + 2 3 3 1 = 2 ( 2 + 3 ) 2 = 2 + 3 \implies \dfrac{a}{b}=\dfrac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)} = \dfrac{3+1+2\sqrt{3}}{3-1}=\dfrac{2(2+\sqrt{3})}{2}= 2+\sqrt{3}

Since 1 2 + 3 = 2 3 b a = 2 3 0.268 \dfrac{1}{2+\sqrt{3}}=2-\sqrt{3} \implies \dfrac{b}{a}=2-\sqrt{3} \approx \boxed{0.268}


Alternate Method:

a 2 + b 2 = 4 a b a^2+b^2=4ab and dividing both sides by a b ab we have a b + b a = 4 \dfrac{a}{b}+\dfrac{b}{a}=4 then let x = b a x=\dfrac{b}{a} and we have x + 1 x = 4 x 2 4 x + 1 = 0 x+\dfrac{1}{x}=4 \implies x^2-4x+1=0 and solving the quadratic gives x = 2 ± 3 x=2\pm \sqrt{3} but since b < a b<a we have b a < 1 \dfrac{b}{a}<1 so we choose 2 3 0.268 2-\sqrt{3} \approx \boxed{0.268} since its less than 1 1 .

Moderator note:

2 great approaches shown :)

Alternative Method: Trigonometry

Let a = rsin(theta), b = rcos(theta)

You will find out that the value of b/a = tan(pi/12)

Rindell Mabunga - 5 years, 1 month ago

I had used second method. Nice solution!

akash patalwanshi - 5 years, 1 month ago

Log in to reply

Thanks! :)

Nihar Mahajan - 5 years, 1 month ago

Log in to reply

Hii!I used the second method! I Have a doubt in my note Logarithic Tactics!can u help me? I'm stuck on that from many days!

Thanks

naitik sanghavi - 5 years, 1 month ago

I adopted the second method and actully solved it orally execpt for using my calculator to find the value of (2-√3)

Aditya Kumar - 5 years, 1 month ago

I used the first approach . Nice question !

Chirayu Bhardwaj - 5 years, 1 month ago

i'm using your first method

Didn't think second method going to work so yeah, it's actually works

Jason Chrysoprase - 5 years, 1 month ago

Even I used the first method . BTW the second method is a COOL approach (+ 1) !!!

abc xyz - 5 years, 1 month ago
Dragan Marković
May 3, 2016

This is a quadratic equation we can write a 2 + b 2 4 a b = 0 a^{2}+b^{2}-4ab=0 lets solve for b: b = 4 a + / 16 a 2 4 a 2 2 = 4 a + / 2 3 a 2 = 2 a + / 3 a b= \frac{4a +/- \sqrt{16a^{2}-4a^{2}}}{2}= \frac{4a+/- 2\sqrt{3}a}{2}= 2a+/-\sqrt{3}a Since a > b = > b = a ( 2 3 ) b a = a ( 2 3 ) a a>b => b=a(2- \sqrt{3}) \frac{b}{a}=\frac{a(2-\sqrt{3})}{a} Which leaves us with 2 3 = 0 , 268 2-\sqrt{3}=\boxed{0,268}

Jan Sadowski
May 4, 2016

As I skimmed through your solutions I realized mine is quite different. It goes like this:

  1. a 2 + b 2 = 4 a b a^2+b^2=4ab

  2. a 2 4 a b + 4 b 2 = 3 b 2 a^2-4ab+4b^2=3b^2

  3. ( a 2 b ) 2 = 3 b 2 ) (a-2b)^2=3b^2)

  4. a 2 b = b 3 a-2b=b\sqrt{3}

  5. a = b ( 3 + 2 ) a=b(\sqrt{3}+2)

Then, we can substitute a a for b ( 3 + 2 ) b(\sqrt{3}+2) in b a \frac{b}{a} leaving us with:

b b ( 3 + 2 ) = 1 3 + 2 0.268 \dfrac{b}{b(\sqrt{3}+2)}=\dfrac{1}{\sqrt{3}+2}\approx 0.268

Puneet Pinku
May 16, 2016

From the given information we see that

( a + b ) 2 = 6 a b , ( a b ) 2 = 2 a b (a+b)^2 = 6ab, (a-b)^2 = 2ab

\Rightarrow a + b a b \Large \frac{a+b}{a-b} = 3 \sqrt{3}

Now, dividing numerator and denominator by a, we get,

a + b a a b a \Rightarrow \huge \frac{\frac{a+b}{a}}{\frac{a-b}{a}} = 3 \sqrt{3}

1 + b a 1 b a \Rightarrow \huge \frac{1 + \frac{b}{a}}{1 - \frac{b}{a}} = 3 \sqrt{3}

1 + b a \Rightarrow \large 1 + \frac{b}{a} = 3 3 b a \sqrt{3} - \sqrt{3} \large \frac{b}{a}

( 1 + 3 ) b a \Rightarrow \large (1+\sqrt{3})\large \frac{b}{a} = 3 1 \sqrt{3}-1

b a \Rightarrow \Large \frac{b}{a} = 3 1 3 + 1 \Large \frac{\sqrt{3}-1}{\sqrt{3}+1} = 2 3 2 - \sqrt{3} 0.268 \approx 0.268

Erald Gjini
May 6, 2016

a^2-4ab+b^2=0 =>> 3a^2-3a^2+a^2-4ab+b^2=0 =>> 4a^2-4ab+b^2=3a^2 =>>> (2a-b)^2=3a^2 =>>2a-b=a3^1/2 =>>>2a-a3^1/2=b =>> a(2-3^1/2)=b =>>> b/a =>>> a(2-3^1/2)/a=(2-3^1/2)

1 + ( b a ) 2 = 4 b a . L e t b a = X . W e k n o w ( m ± n ) 2 = m 2 + n 2 ± 2 m n . ( 1 + X ) 2 = 6 X , a n d ( 1 X ) 2 = 2 X . 1 + X = 6 X a n d 1 X = 2 X A d d i n g t h e t w o e q u a t i o n s , 2 = 2 X ( 3 + 1 ) X = 2 4 + 2 3 = 2 3 = 0.2679 1+(\frac b a )^2=4*\frac b a.\ \ \ Let\ \frac b a=X.\\ We\ know\ (m \pm n)^2=m^2 + n^2 \pm 2mn.\\ \implies\ (1+X)^2=6X,\\ \ \ and\ \ \ (1-X)^2=2X.\\ \therefore\ 1+X=\sqrt{6X}\ \ \ and\ \ \ \ \ 1-X=\sqrt{2X} \\ Adding\ the\ two\ equations,\\ \therefore\ 2=\sqrt{2X}*(\sqrt3+1) \\ \implies\ X=\dfrac 2{4+2\sqrt3}=2-\sqrt3=\large \ \ \ \ \color{#D61F06}{0.2679}

Roy Bunford
May 4, 2016

Divide by a ^2 [b/a]^2-4[b/a] +1=0 so b/a 2+√3. or 2 -√3. b/a <1 so b/a = 2-√3 = 0.268

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...