Inspired by Patrick Corn

Calculus Level 5

Let H n = 1 + 1 2 + 1 3 + + 1 n H_n = 1+\dfrac12 + \dfrac13 + \cdots + \dfrac1{n} be the n th n^\text{th} harmonic number .

The sum n = 1 H n n 2 n = π A B \sum_{n=1}^\infty \frac{H_n}{n2^n} = \dfrac{\pi^{A}}{B} for some positive integers A A and B B . What is A + B A+B ?


Inspiration .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 27, 2016

Since n = 1 H n x n = ln ( 1 x ) 1 x x < 1 \sum_{n=1}^\infty H_n x^n \; =\; - \frac{\ln(1-x)}{1-x} \qquad \qquad |x| < 1 we deduce that n = 1 H n n 2 n = 0 1 2 ln ( 1 x ) x ( 1 x ) d x = 1 2 1 ln x x ( 1 x ) d x = n = 0 1 2 1 x n 1 ln x d x \begin{array}{rcl} \displaystyle \sum_{n=1}^\infty \frac{H_n}{n2^n} & = & \displaystyle -\int_0^{\frac12} \frac{\ln(1-x)}{x(1-x)}\,dx \; = \; -\int_{\frac12}^1 \frac{\ln x}{x(1-x)}\,dx \\ & = & \displaystyle -\sum_{n=0}^\infty \int_{\frac12}^1 x^{n-1} \ln x\,dx \end{array} and since 1 2 1 x n 1 ln x d x = { 1 2 ( ln 2 ) 2 n = 0 1 n 2 + ln 2 n 2 n + 1 n 2 2 n n 1 \int_{\frac12}^1 x^{n-1} \ln x\,dx \; = \; \left\{ \begin{array}{lll} \displaystyle -\tfrac12(\ln 2)^2 & \qquad & n = 0 \\ \displaystyle-\frac{1}{n^2} + \frac{\ln 2}{n\,2^n} + \frac{1}{n^2\,2^n} & & n \ge 1 \end{array} \right. we deduce that n = 1 H n n 2 n = 1 2 ( ln 2 ) 2 + n = 1 { 1 n 2 ln 2 n 2 n 1 n 2 2 n } = 1 2 ( ln 2 ) 2 + ζ ( 2 ) ( ln 2 ) 2 L i 2 ( 1 2 ) = ζ ( 2 ) 1 2 ( ln 2 ) 2 1 12 π 2 + 1 2 ( ln 2 ) 2 = 1 12 π 2 \begin{array}{rcl} \displaystyle \sum_{n=1}^\infty \frac{H_n}{n2^n} & = & \displaystyle \tfrac12(\ln 2)^2 + \sum_{n=1}^\infty\left\{ \frac{1}{n^2} - \frac{\ln 2}{n\,2^n} - \frac{1}{n^2\,2^n}\right\} \\ & = & \displaystyle \tfrac12(\ln 2)^2 + \zeta(2) - (\ln 2)^2 - \mathrm{Li}_2(\tfrac12) \\ & = & \zeta(2) - \tfrac12(\ln2)^2 - \tfrac{1}{12}\pi^2 + \tfrac12(\ln2)^2 \; =\; \tfrac{1}{12}\pi^2 \end{array} making the answer 2 + 12 = 14 2 + 12 = \boxed{14} .

Could you please explain how we can deduce n = 1 H n n 2 n = 0 1 2 ln ( 1 x ) x ( 1 x ) d x \displaystyle\sum_{n=1}^{\infty}\frac{H_n}{n2^n} = -\int_{0}^{\frac{1}{2}}\frac{\ln(1-x)}{x(1-x)}dx from the generating function?

First Last - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...