Inspired by Patrick Corn

Calculus Level 5

Let H n ( 2 ) = k = 1 n 1 k 2 { H }_{ n }^{ (2) }=\displaystyle\sum _{ k=1 }^{ n }{ \dfrac { 1 }{ { k }^{ 2 } } } , and if n = 1 H n ( 2 ) 2 n \sum _{ n=1 }^{ \infty }{ \dfrac { { H }_{ n }^{ (2) } }{ { 2 }^{ n } } }

is in the form π a b ( ln d ) c , \dfrac { { \pi }^{ a } }{ b } -(\ln d)^c,

where a , b , c a,b,c and d d are integers, find a + b + c + d a+b+c+d .


Inspiration .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

This solution is devoted to guys who don't know about Li \text{Li} (including me)

n = 1 H n ( 2 ) 2 n = 2 × 1 1 k 2 2 k 1 2 n 1 1 k 2 = 2 × 1 1 k 2 2 k \displaystyle \sum _{ n=1 }^{ \infty }{ \dfrac { { H }_{ n }^{ (2) } }{ { 2 }^{ n } } } =2\times \sum _{ 1 }^{ \infty }{ \dfrac { 1 }{ { k }^{ 2 }{ 2 }^{ k } } } -\dfrac { 1 }{ { 2 }^{ n } } \sum _{ 1 }^{ \infty }{ \dfrac { 1 }{ { k }^{ 2 } } } =2\times \sum _{ 1 }^{ \infty }{ \dfrac { 1 }{ { k }^{ 2 }{ 2 }^{ k } } }

Now, consider this sum

1 1 k 2 a k = I ( a ) \displaystyle \sum _{ 1 }^{ \infty }{ \dfrac { 1 }{ { k }^{ 2 }{ a }^{ k } } }=I(a)

d d a I ( a ) = d d a 1 1 k 2 a k = 1 1 k a k + 1 = 1 a 1 1 k a k \displaystyle \dfrac { d }{ da } I(a)=\dfrac { d }{ da } \sum _{ 1 }^{ \infty }{ \dfrac { 1 }{ { k }^{ 2 }a^{ k } } } =-\sum _{ 1 }^{ \infty }{ \dfrac{ 1 }{ { k }a^{ k+1 } } } =\dfrac { -1 }{ a } \sum _{ 1 }^{ \infty }{ \dfrac { 1 }{ { k }a^{ k } } }

d d a I ( a ) = 1 a 1 1 k a k = 1 a ln ( 1 1 a ) \displaystyle \frac { d }{ da } I(a)=\dfrac { -1 }{ a } \sum _{ 1 }^{ \infty }{ \dfrac { 1 }{ { k }a^{ k } } } =\dfrac { 1 }{ a } \ln {( 1-\dfrac { 1 }{ a } ) }

d d a I ( a ) = ln ( a 1 ) ln a a \displaystyle \dfrac { d }{ da } I(a)=\dfrac { \ln {( a-1) } -\ln { a } }{ a }

Now, let's integrate it!

d d a I ( a ) d a = ln ( a 1 ) ln a a d a \displaystyle \int { \dfrac { d }{ da } I(a)da } =\int { \dfrac { \ln {( a-1) } -\ln { a } }{ a } da }

But we know that I ( a ) = ζ ( 2 ) I(a)=\zeta(2) when a=1 and we want I(2) , hence,

a = 1 2 d d a I ( a ) d a = a = 1 2 ln ( a 1 ) ln a a d a = I ( 2 ) ζ ( 2 ) \displaystyle \int _{ a=1 }^{ 2 }{ \dfrac { d }{ da } I(a)da } =\int _{ a=1 }^{ 2 }{ \dfrac { \ln {( a-1) } -\ln { a } }{ a } da } =I(2)-\zeta (2)

a = 1 2 ln ( a 1 ) ln a a d a = a = 1 2 ln ( a 1 ) a d a a = 1 2 ln a a d a = a = 1 2 ln ( a 1 ) a d a ( ln a ) 2 2 = a = 1 2 ln ( a 1 ) a d a ( ln 2 ) 2 2 \displaystyle \int _{ a=1 }^{ 2 }{ \dfrac { \ln { (a-1) } -\ln { a } }{ a } da } =\int _{ a=1 }^{ 2 }{ \dfrac { \ln { (a-1) } }{ a } da } -\int _{ a=1 }^{ 2 }{ \dfrac { \ln { a } }{ a } da } =\int _{ a=1 }^{ 2 }{ \dfrac { \ln {( a-1) } }{ a } da } -\dfrac { { (\ln { a } ) }^{ 2 } }{ 2 } =\int _{ a=1 }^{ 2 }{ \dfrac { \ln {( a-1 )} }{ a } da } -\dfrac { { (\ln { 2 } ) }^{ 2 } }{ 2 }

Now, let's look at this integral.

a = 1 2 ln ( a 1 ) a d a = ln ( a 1 ) ln a a = 1 2 ln a ( a 1 ) d a = a = 1 2 ln a a 1 d a \displaystyle \int _{ a=1 }^{ 2 }{ \dfrac { \ln {( a-1) } }{ a } da } =\ln { (a-1) } \ln { a } -\int _{ a=1 }^{ 2 }{ \dfrac { \ln { a } }{ (a-1) } da } =-\int _{ a=1 }^{ 2 }{ \dfrac { \ln { a } }{ a-1 } da }

From ln a = 1 ( a 1 ) n ( 1 ) n + 1 n \displaystyle \ln { a } =\sum _{ 1 }^{ \infty }{ \dfrac { { (a-1) }^{ n }{ (-1) }^{ n+1 } }{ n } }

a = 1 2 1 ( a 1 ) n ( 1 ) n + 1 n a 1 d a = a = 1 2 1 ( a 1 ) n 1 ( 1 ) n + 1 n d a \displaystyle -\int _{ a=1 }^{ 2 }{ \dfrac { \sum _{ 1 }^{ \infty }{ \dfrac { { (a-1) }^{ n }{ (-1) }^{ n+1 } }{ n } } }{ a-1 } da } =-\int _{ a=1 }^{ 2 }{ \sum _{ 1 }^{ \infty }{ \dfrac { { (a-1) }^{ n-1 }{ (-1) }^{ n+1 } }{ n } } da }

a = 1 2 1 ( a 1 ) n 1 ( 1 ) n + 1 n d a = 1 ( 1 ) n + 1 n 2 \displaystyle -\int _{ a=1 }^{ 2 }{ \sum _{ 1 }^{ \infty }{ \dfrac { { (a-1) }^{ n-1 }{ (-1) }^{ n+1 } }{ n } } da } =-\sum _{ 1 }^{ \infty }{ \dfrac { { (-1) }^{ n+1 } }{ { n }^{ 2 } } }

1 ( 1 ) n + 1 n 2 = 1 1 2 2 + 1 3 2 . . . \displaystyle \sum _{ 1 }^{ \infty }{ \dfrac { { (-1) }^{ n+1 } }{ { n }^{ 2 } } } =1-\dfrac { 1 }{ { 2 }^{ 2 } } +\dfrac { 1 }{ { 3 }^{ 2 } } -...

ζ ( 2 ) 1 ( 1 ) n + 1 n 2 = 2 ( 1 2 2 + 1 4 2 + 1 6 2 . . . ) = 1 2 ζ ( 2 ) \displaystyle \zeta (2)-\sum _{ 1 }^{ \infty }{ \dfrac { { (-1) }^{ n+1 } }{ { n }^{ 2 } } } =2(\dfrac { 1 }{ { 2 }^{ 2 } } +\dfrac { 1 }{ { 4 }^{ 2 } } +\dfrac { 1 }{ { 6 }^{ 2 } } ...)=\dfrac { 1 }{ 2 } \zeta (2)

1 ( 1 ) n + 1 n 2 = 1 2 ζ ( 2 ) \displaystyle \sum _{ 1 }^{ \infty }{ \dfrac { { (-1) }^{ n+1 } }{ { n }^{ 2 } } } =\dfrac { 1 }{ 2 } \zeta (2)

Combine these results we get

I ( 2 ) ζ ( 2 ) = ζ ( 2 ) 2 ( ln ( 2 ) ) 2 2 \displaystyle I(2)-\zeta(2)=-\dfrac{\zeta(2)}{2}-\frac{(\ln(2))^{2}}{2} or I ( 2 ) = ζ ( 2 ) 2 ( ln ( 2 ) ) 2 2 I(2)=\dfrac{\zeta(2)}{2}-\dfrac{(\ln(2))^{2}}{2}

Hence, the summation above reduces to

1 H n ( 2 ) 2 n = 2 ( ζ ( 2 ) 2 ( ln ( 2 ) ) 2 2 ) = π 2 6 ( ln ( 2 ) ) 2 \displaystyle \sum _{ 1 }^{ \infty }{ \dfrac { { H }_{ n }^{ (2) } }{ { 2 }^{ n } } } =2\left( \dfrac{\zeta(2)}{2}-\dfrac{(\ln(2))^{2}}{2} \right)=\dfrac{\pi^{2}}{6}-(\ln(2))^{2}

Then,

a + b + c + d = 2 + 6 + 2 + 2 = 12 \displaystyle a+b+c+d=2+6+2+2=\boxed{12}

Yes, you have effectively proved the identity L i 2 ( 1 2 ) = 1 12 π 2 1 2 ( ln 2 ) 2 \mathrm{Li}_2(\tfrac12) \; = \; \tfrac{1}{12}\pi^2 - \tfrac12(\ln 2)^2 (which I quoted) nicely.

Mark Hennings - 5 years, 1 month ago

Nice and elegant solution!

Aditya Kumar - 5 years, 1 month ago
Mark Hennings
Apr 27, 2016

Reversing the order of summation n = 1 H n ( 2 ) 2 n = n = 1 k = 1 n 1 k 2 2 n = k = 1 n = k 1 k 2 2 n = k = 1 1 k 2 2 k 1 = 2 L i 2 ( 1 2 ) = 1 6 π 2 ( ln 2 ) 2 \begin{array}{rcl} \displaystyle \sum_{n=1}^\infty \frac{H_n^{(2)}}{2^n} & = & \displaystyle \sum_{n=1}^\infty \sum_{k=1}^n \frac{1}{k^22^n} \; = \; \displaystyle \sum_{k=1}^\infty \sum_{n=k}^\infty \frac{1}{k^22^n} \; = \; \displaystyle \sum_{k=1}^\infty \frac{1}{k^22^{k-1}} \\ & = & \displaystyle 2\mathrm{Li}_2(\tfrac12) \; =\; \displaystyle \tfrac16\pi^2 - (\ln 2)^2 \end{array} making the answer 2 + 6 + 2 + 2 = 12 2+6+2+2 = \boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...