Let H n ( 2 ) = k = 1 ∑ n k 2 1 , and if n = 1 ∑ ∞ 2 n H n ( 2 )
is in the form b π a − ( ln d ) c ,
where a , b , c and d are integers, find a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yes, you have effectively proved the identity L i 2 ( 2 1 ) = 1 2 1 π 2 − 2 1 ( ln 2 ) 2 (which I quoted) nicely.
Nice and elegant solution!
Reversing the order of summation n = 1 ∑ ∞ 2 n H n ( 2 ) = = n = 1 ∑ ∞ k = 1 ∑ n k 2 2 n 1 = k = 1 ∑ ∞ n = k ∑ ∞ k 2 2 n 1 = k = 1 ∑ ∞ k 2 2 k − 1 1 2 L i 2 ( 2 1 ) = 6 1 π 2 − ( ln 2 ) 2 making the answer 2 + 6 + 2 + 2 = 1 2 .
Problem Loading...
Note Loading...
Set Loading...
This solution is devoted to guys who don't know about Li (including me)
n = 1 ∑ ∞ 2 n H n ( 2 ) = 2 × 1 ∑ ∞ k 2 2 k 1 − 2 n 1 1 ∑ ∞ k 2 1 = 2 × 1 ∑ ∞ k 2 2 k 1
Now, consider this sum
1 ∑ ∞ k 2 a k 1 = I ( a )
d a d I ( a ) = d a d 1 ∑ ∞ k 2 a k 1 = − 1 ∑ ∞ k a k + 1 1 = a − 1 1 ∑ ∞ k a k 1
d a d I ( a ) = a − 1 1 ∑ ∞ k a k 1 = a 1 ln ( 1 − a 1 )
d a d I ( a ) = a ln ( a − 1 ) − ln a
Now, let's integrate it!
∫ d a d I ( a ) d a = ∫ a ln ( a − 1 ) − ln a d a
But we know that I ( a ) = ζ ( 2 ) when a=1 and we want I(2) , hence,
∫ a = 1 2 d a d I ( a ) d a = ∫ a = 1 2 a ln ( a − 1 ) − ln a d a = I ( 2 ) − ζ ( 2 )
∫ a = 1 2 a ln ( a − 1 ) − ln a d a = ∫ a = 1 2 a ln ( a − 1 ) d a − ∫ a = 1 2 a ln a d a = ∫ a = 1 2 a ln ( a − 1 ) d a − 2 ( ln a ) 2 = ∫ a = 1 2 a ln ( a − 1 ) d a − 2 ( ln 2 ) 2
Now, let's look at this integral.
∫ a = 1 2 a ln ( a − 1 ) d a = ln ( a − 1 ) ln a − ∫ a = 1 2 ( a − 1 ) ln a d a = − ∫ a = 1 2 a − 1 ln a d a
From ln a = 1 ∑ ∞ n ( a − 1 ) n ( − 1 ) n + 1
− ∫ a = 1 2 a − 1 ∑ 1 ∞ n ( a − 1 ) n ( − 1 ) n + 1 d a = − ∫ a = 1 2 1 ∑ ∞ n ( a − 1 ) n − 1 ( − 1 ) n + 1 d a
− ∫ a = 1 2 1 ∑ ∞ n ( a − 1 ) n − 1 ( − 1 ) n + 1 d a = − 1 ∑ ∞ n 2 ( − 1 ) n + 1
1 ∑ ∞ n 2 ( − 1 ) n + 1 = 1 − 2 2 1 + 3 2 1 − . . .
ζ ( 2 ) − 1 ∑ ∞ n 2 ( − 1 ) n + 1 = 2 ( 2 2 1 + 4 2 1 + 6 2 1 . . . ) = 2 1 ζ ( 2 )
1 ∑ ∞ n 2 ( − 1 ) n + 1 = 2 1 ζ ( 2 )
Combine these results we get
I ( 2 ) − ζ ( 2 ) = − 2 ζ ( 2 ) − 2 ( ln ( 2 ) ) 2 or I ( 2 ) = 2 ζ ( 2 ) − 2 ( ln ( 2 ) ) 2
Hence, the summation above reduces to
1 ∑ ∞ 2 n H n ( 2 ) = 2 ( 2 ζ ( 2 ) − 2 ( ln ( 2 ) ) 2 ) = 6 π 2 − ( ln ( 2 ) ) 2
Then,
a + b + c + d = 2 + 6 + 2 + 2 = 1 2