Inspired by Patrick Corn

Calculus Level 5

n = 1 ( 1 ) n 1 H n n \large \displaystyle\sum \limits^{\infty }_{n=1}\dfrac{( -1) ^{n-1}H_{n}}{n}

If the series above is equal to ζ ( A ) B ( ln D ) C E , \dfrac{\zeta ( A) }{B} -\dfrac{(\ln D)^C }{E} , where A A , B B , C C , D D and E E are all positive integers, find A + B + C + D + E A+B+C+D+E .

Notations :

  • H n H_n denotes the n th n^\text{th} harmonic number , H n = 1 + 1 2 + 1 3 + + 1 n H_n = 1 + \dfrac12 + \dfrac13 + \cdots + \dfrac1n .

  • ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


Inspiration .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
Apr 30, 2016

We have the Taylor Series ln ( x + 1 ) x + 1 = n = 1 ( 1 ) n 1 H n x n \frac{\ln(x+1)}{x+1}=\sum_{n=1}^{\infty}(-1)^{n-1}H_nx^n . Dividing by x x and integrating gives n = 1 ( 1 ) n 1 H n x n n = 0 x ln ( t + 1 ) t ( t + 1 ) d t = L i 2 ( x ) 1 2 ln 2 ( x + 1 ) \sum_{n=1}^{\infty}\frac{(-1)^{n-1}H_n x^n}{n}=\int_{0}^{x}\frac{\ln(t+1)}{t(t+1)}dt=-Li_2(-x)-\frac{1}{2}\ln^2(x+1) . For x = 1 x=1 this comes out to be ζ ( 2 ) 2 ( ln 2 ) 2 2 \frac{\zeta(2)}{2}-\frac{(\ln 2)^2}{2} , so that the answer is 10 \boxed{10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...