One of those...

A = ( 2 n + 1 n + 1 ) ( 2 n 1 n ) \large A = \frac{\binom{2n + 1}{n + 1}}{\binom{2n - 1}{n}} has a closed form if n Z + n \in \mathbb{Z}^+ . Find this closed form, and give the value of A \large A if n = 1 0 9 n = 10^9 . Give your answer to 6 decimal places


The answer is 3.999999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

A = ( 2 n + 1 n + 1 ) ( 2 n 1 n ) = ( 2 n + 1 ) ! ( n + 1 ) ! n ! ( 2 n 1 ) ! n ! ( n 1 ) ! = ( 2 n + 1 ) ! ( n + 1 ) ! ( 2 n 1 ) ! ( n 1 ) ! = ( 2 n + 1 ) 2 n ( n + 1 ) n = 2 ( 2 n + 1 ) n + 1 \large A = \frac{\binom{2n + 1}{n + 1}}{\binom{2n - 1}{n}} = \frac{\frac{(2n + 1)!}{(n+1)! \cdot n!}}{\frac{(2n - 1)!}{n! \cdot (n - 1)!}} = \frac{\frac{(2n + 1)!}{(n+1)!}}{\frac{(2n - 1)!}{(n - 1)!}} = \frac{(2n + 1) \cdot 2n}{(n + 1) \cdot n} = \frac{2(2n +1)}{n + 1} Now, substituing n = 1 0 9 n = 10^9 and using a calculator ( 2 1 0 9 + 1 1 0 9 + 1 ) ( 2 1 0 9 1 1 0 9 ) = 2 ( 2 1 0 9 + 1 ) 1 0 9 + 1 3.999999 \large \frac{\binom{2\cdot 10^9 + 1}{10^9 + 1}}{\binom{2\cdot 10^9 - 1}{10^9}} = \frac{2(2 \cdot 10^9 + 1)}{10^9 + 1} \approx 3.999999

Note.- Inspiration: this exercise

A = ( 2 n + 1 n + 1 ) ( 2 n 1 n ) = ( 2 n + 1 ) ! n ! ( n + 1 ) ! n ! ( n 1 ) ! ( 2 n 1 ) ! = ( 2 n + 1 ) ! ( n + 1 ) ! ( n 1 ) ! ( 2 n 1 ) ! = 2 n ( 2 n + 1 ) n ( n + 1 ) = 2 ( 2 n + 1 ) n + 1 = 4 n + 4 2 n + 1 = 4 2 n + 1 \begin{aligned} A & = \frac {2n+1 \choose n+1}{2n-1 \choose n} \\ & = \frac {(2n+1)!}{n!(n+1)!} \cdot \frac {n!(n-1)!}{(2n-1)!} \\ & = \frac {(2n+1)!}{(n+1)!} \cdot \frac {(n-1)!}{(2n-1)!} \\ & = \frac {2n(2n+1)}{n(n+1)} \\ & = \frac {2(2n+1)}{n+1} \\ & = \frac {4n+4-2}{n+1} \\ & = 4 - \frac 2{n+1} \end{aligned}

For n = 1 0 9 n=10^9 , A = 4 2 1 0 9 + 1 4 0.000000002 = 3.999999998 4.000000 A = 4 - \dfrac 2{10^9+1} \approx 4 - 0.000000002 = 3.999999998 \approx \boxed{4.000000} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...