Inspired by Paul Patawaran

Calculus Level 4

n = 1 1 n ( n + 1 ) ( n + 1 ) ! = ? \large\displaystyle\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+1)!} = \, ?


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

1 3 e \frac{1}{ 3 -e } e 2 + 3 e^2 + 3 e 2 e -2 3 e 3 - e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = n = 1 1 n ( n + 1 ) ( n + 1 ) ! = n = 1 ( 1 n 1 n + 1 ) 1 ( n + 1 ) ! = n = 1 ( 1 n ( n + 1 ) n ! 1 ( n + 1 ) ( n + 1 ) ! ) = n = 1 ( 1 n n ! 1 ( n + 1 ) n ! 1 ( n + 1 ) ( n + 1 ) ! ) = n = 1 ( 1 n n ! 1 ( n + 1 ) ( n + 1 ) ! ) n = 1 1 ( n + 1 ) n ! See note. = 1 ( e 2 ) = 3 e \begin{aligned} S & = \sum_{n=1}^\infty \frac 1{n(n+1)(n+1)!} \\ & = \sum_{n=1}^\infty \left(\frac 1n - \frac 1{n+1}\right) \frac 1{(n+1)!} \\ & = \sum_{n=1}^\infty \left(\frac 1{n(n+1)n!} - \frac 1{(n+1)(n+1)!}\right) \\ & = \sum_{n=1}^\infty \left(\frac 1{nn!} - \frac 1{(n+1)n!} - \frac 1{(n+1)(n+1)!}\right) \\ & = \sum_{n=1}^\infty \left(\frac 1{nn!} - \frac 1{(n+1)(n+1)!}\right) - \color{#3D99F6} \sum_{n=1}^\infty \frac 1{(n+1)n!} & \small \color{#3D99F6} \text{See note.} \\ & = 1 - \color{#3D99F6}(e-2) \\ & = \boxed{3-e} \end{aligned}


Note: Consider the Maclaurin series of e x e^x .

n = 0 x n n ! = e x n = 0 x n n ! d x = x + x 2 2 ! + x 3 3 ! + x 4 4 ! + . . . n = 0 x n + 1 ( n + 1 ) n ! = e x 1 x 1 ( 0 ! ) + n = 1 x n + 1 ( n + 1 ) n ! = e x 1 n = 1 x n + 1 ( n + 1 ) n ! = e x 1 x Putting x = 1 n = 1 1 ( n + 1 ) n ! = e 2 \small \begin{aligned} \sum_{n=0}^\infty \frac {x^n}{n!} & = e^x \\ \int \sum_{n=0}^\infty \frac {x^n}{n!} \ dx & = x + \frac {x^2}{2!} + \frac {x^3}{3!} + \frac {x^4}{4!} + ... \\ \sum_{\color{#3D99F6}n=0}^\infty \frac {x^{n+1}}{(n+1)n!} & = e^x - 1 \\ \frac x{1(0!)} + \sum_{\color{#D61F06}n=1}^\infty \frac {x^{n+1}}{(n+1)n!} & = e^x - 1 \\ \implies \sum_{n=1}^\infty \frac {x^{n+1}}{(n+1)n!} & = e^x - 1 - x & \small \color{#3D99F6} \text{Putting }x = 1 \\ \sum_{n=1}^\infty \frac 1{(n+1)n!} & = e - 2 \end{aligned}

Sir, how did it become e x 1 e^x - 1 ?

Christian Daang - 4 years, 2 months ago

Log in to reply

I have added a line to explain. Hope it is useful.

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

I got it already sir. Thank you. :)

Christian Daang - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...