Consider a function whose series is , where . How many of the 3 functions above is/are a closed form of for ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let us define y = g ( x ) = tanh ( x ) = e x + e − x e x − e − x The inverse function is g − 1 ( x ) = a r c t a n h ( x ) Another way to express a r c t a n h ( x ) is:
x x e g − 1 ( x ) + x e − g − 1 ( x ) x e 2 g − 1 ( x ) + x e 2 g − 1 ( x ) ( x − 1 ) e 2 g − 1 ( x ) g − 1 ( x ) g − 1 ( x ) = e g − 1 ( x ) + e − g − 1 ( x ) e g − 1 ( x ) − e − g − 1 ( x ) = e g − 1 ( x ) − e − g − 1 ( x ) = e 2 g − 1 ( x ) − 1 = − x − 1 = 1 − x 1 + x = 2 1 ln ( 1 − x 1 + x ) = − 2 1 ln ( 1 + x 1 − x )
This means that all three of the functions are equations for a r c t a n h ( x ) .
The maclaurin series for ln ( 1 − x ) is
− ∑ n = 1 ∞ n x n .
The equations above for a r c t a n h ( x ) are the same as 2 1 ( ln ( 1 + x ) − ln ( 1 − x ) ) using the laws of logarithms that ln ( b a ) = ln ( a ) − ln ( b ) Replacing the logarithms with the maclaurin series for − ln ( 1 − x ) , we get
a r c t a n h ( x ) = 2 1 ( n = 1 ∑ ∞ n x n − n = 1 ∑ ∞ ( − 1 ) n n x n ) = 2 1 ( ( 1 x 1 + 2 x 2 + 3 x 3 . . . ) − ( − 1 x 1 + 2 x 2 − 3 x 3 . . . ) ) = 2 1 ( 2 ( 1 x 1 + 3 x 3 + 5 x 5 . . . ) ) = n = 1 ∑ ∞ 2 n − 1 x 2 n − 1