Inspired by Rishabh Cool

Calculus Level 4

1 2 ln ( 1 x 1 + x ) arctanh x 1 2 ln ( 1 + x 1 x ) -\dfrac12 \ln\left( \dfrac{1-x}{1+x} \right) \qquad \qquad \text{arctanh} x \qquad \qquad \dfrac12 \ln \left( \dfrac{1+x}{1-x} \right)

Consider a function f ( x ) f(x) whose series is n = 1 x 2 n 1 2 n 1 \displaystyle \sum_{n=1}^\infty \dfrac{x^{2n-1}}{2n-1} , where x < 1 |x| < 1 . How many of the 3 functions above is/are a closed form of f ( x ) f(x) for x < 1 |x| < 1 ?


Inspiration .

3 1 0 f ( x ) f(x) is not well- defined 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Advait Nene
May 26, 2018

Let us define y = g ( x ) = tanh ( x ) = e x e x e x + e x y=g(x)=\tanh(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} The inverse function is g 1 ( x ) = a r c t a n h ( x ) g^{-1}(x)=arctanh(x) Another way to express a r c t a n h ( x ) arctanh(x) is:

x = e g 1 ( x ) e g 1 ( x ) e g 1 ( x ) + e g 1 ( x ) x e g 1 ( x ) + x e g 1 ( x ) = e g 1 ( x ) e g 1 ( x ) x e 2 g 1 ( x ) + x = e 2 g 1 ( x ) 1 e 2 g 1 ( x ) ( x 1 ) = x 1 e 2 g 1 ( x ) = 1 + x 1 x g 1 ( x ) = 1 2 ln ( 1 + x 1 x ) g 1 ( x ) = 1 2 ln ( 1 x 1 + x ) \begin{aligned} x&=\frac{e^{g^{-1}(x)}-e^{-g^{-1}(x)}}{e^{g^{-1}(x)}+e^{-g^{-1}(x)}}\\ xe^{g^{-1}(x)}+xe^{-g^{-1}(x)}&=e^{g^{-1}(x)}-e^{-g^{-1}(x)}\\ xe^{2g^{-1}(x)}+x&=e^{2g^{-1}(x)}-1\\ e^{2g^{-1}(x)}(x-1)&=-x-1\\ e^{2g^{-1}(x)}&=\frac{1+x}{1-x}\\ g^{-1}(x)&=\frac{1}{2}\ln(\frac{1+x}{1-x})\\ g^{-1}(x)&=-\frac{1}{2}\ln(\frac{1-x}{1+x})\\ \end{aligned}

This means that all three of the functions are equations for a r c t a n h ( x ) arctanh(x) .

The maclaurin series for ln ( 1 x ) \ln(1-x) is

n = 1 x n n -\sum_{n=1}^{\infty}\frac{x^{n}}{n} .

The equations above for a r c t a n h ( x ) arctanh(x) are the same as 1 2 ( ln ( 1 + x ) ln ( 1 x ) ) \frac{1}{2}(\ln(1+x)-\ln(1-x)) using the laws of logarithms that ln ( a b ) = ln ( a ) ln ( b ) \ln(\frac{a}{b})=\ln(a)-\ln(b) Replacing the logarithms with the maclaurin series for ln ( 1 x ) -\ln(1-x) , we get

a r c t a n h ( x ) = 1 2 ( n = 1 x n n n = 1 ( 1 ) n x n n ) = 1 2 ( ( x 1 1 + x 2 2 + x 3 3 . . . ) ( x 1 1 + x 2 2 x 3 3 . . . ) ) = 1 2 ( 2 ( x 1 1 + x 3 3 + x 5 5 . . . ) ) = n = 1 x 2 n 1 2 n 1 \begin{aligned} arctanh(x)&=\frac{1}{2}(\sum_{n=1}^{\infty}\frac{x^{n}}{n}-\sum_{n=1}^{\infty}(-1)^{n}\frac{x^{n}}{n})\\ &=\frac{1}{2}((\frac{x^{1}}{1}+\frac{x^{2}}{2}+\frac{x^{3}}{3}...)-(-\frac{x^{1}}{1}+\frac{x^{2}}{2}-\frac{x^{3}}{3}...))\\ &=\frac{1}{2}(2(\frac{x^{1}}{1}+\frac{x^{3}}{3}+\frac{x^{5}}{5}...))\\ &=\sum_{n=1}^{\infty}\frac{x^{2n-1}}{2n-1}\\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...