Applying every concept we know

Geometry Level 5

k = 1 49 cot 2 ( ( 2 k + 1 ) π 100 ) \displaystyle\sum_{k=1}^{49} \cot^{2} \left( \dfrac{(2k+1)\pi}{100}\right)

If the summation above can be expressed as ( a csc 2 ( π b ) ) \left( a-\csc^{2} \left( \dfrac{\pi}{b}\right)\right) for positive integers a , b a,b , find a + b a+b .

Inspiration .


The answer is 2551.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karthik Kannan
May 30, 2015

We start by considering the complex polynomial

p ( z ) = z n e ι θ p(z)=z^{n}-e^{\iota\theta}

The roots of this polynomial are e ι ( θ + 2 k π ) / n , 0 k n 1 e^{\iota(\theta+2k\pi)/n}, 0\leq k\leq n-1 and k Z k\in\mathbb{Z} .

Therefore the polynomial can be written as

p ( z ) = ( z e ι θ / n ) ( z e ι ( θ + 2 π ) / n ) ( z e ι ( θ + 4 π ) / n ) . . . ( z e ι ( θ + 2 ( n 1 ) π ) / n ) p(z)=(z-e^{\iota\theta/n})(z-e^{\iota(\theta+2\pi)/n})(z-e^{\iota(\theta+4\pi)/n})...(z-e^{\iota(\theta+2(n-1)\pi)/n})

Substituting z = 1 z=1 we get

1 e ι θ = ( 1 e ι θ / n ) k = 1 n 1 ( 2 ι sin ( θ + 2 k π 2 n ) e ι ( θ + 2 k π ) / 2 n ) 1-e^{\iota\theta}=(1-e^{\iota\theta/n})\displaystyle\prod_{k=1}^{n-1} \left( -2\iota\sin\left( \dfrac{\theta+2k\pi}{2n}\right)e^{\iota(\theta+2k\pi)/2n}\right)

On simplifying the above identity we get

k = 1 n 1 sin ( θ + 2 k π 2 n ) = sin ( θ / 2 ) 2 n 1 sin ( θ / 2 n ) \displaystyle\prod_{k=1}^{n-1} \sin\left( \dfrac{\theta+2k\pi}{2n}\right)=\dfrac{\sin (\theta/2)}{2^{n-1}\sin (\theta/2n)}

k = 1 n 1 ln ( sin ( θ + 2 k π 2 n ) ) = ln sin θ 2 ln sin θ 2 n + ln ( 1 2 n 1 ) \therefore\displaystyle\sum_{k=1}^{n-1} \ln\left( \sin\left( \dfrac{\theta+2k\pi}{2n}\right)\right)=\ln\sin\dfrac{\theta}{2}-\ln\sin\dfrac{\theta}{2n}+\ln\left( \dfrac{1}{2^{n-1}}\right)

Differentiating both sides w.r.t. θ \theta

k = 1 n 1 cot ( θ + 2 k π 2 n ) = n cot θ 2 cot θ 2 n \displaystyle\sum_{k=1}^{n-1}\cot\left( \dfrac{\theta+2k\pi}{2n}\right)=n\cot\dfrac{\theta}{2}-\cot\dfrac{\theta}{2n}

Again differentiating w.r.t. θ \theta

k = 1 n 1 csc 2 ( θ + 2 k π 2 n ) = n 2 csc 2 θ 2 csc 2 θ 2 n \displaystyle\sum_{k=1}^{n-1}\csc^{2}\left( \dfrac{\theta+2k\pi}{2n}\right)=n^{2}\csc^{2}\dfrac{\theta}{2}-\csc^{2}\dfrac{\theta}{2n}

Using the identity 1 + cot 2 θ = csc 2 θ 1+\cot^{2}\theta=\csc^{2}\theta we get

k = 1 n 1 cot 2 ( θ + 2 k π 2 n ) = n 2 csc 2 θ 2 csc 2 θ 2 n n + 1 \displaystyle\sum_{k=1}^{n-1}\cot^{2}\left( \dfrac{\theta+2k\pi}{2n}\right)=n^{2}\csc^{2}\dfrac{\theta}{2}-\csc^{2}\dfrac{\theta}{2n}-n+1

Now substitute θ = π , n = 50 \theta=\pi,n=50 to obtain

k = 1 49 cot 2 ( ( 2 k + 1 ) π 100 ) = 2451 csc 2 π 100 \displaystyle\sum_{k=1}^{49}\cot^{2}\left( \dfrac{(2k+1)\pi}{100}\right)=2451-\csc^{2}\dfrac{\pi}{100}

a + b = 2551 \therefore a+b=\boxed{2551}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...