Inspired by Ronak Agarwal

Calculus Level 5

0 π 2 [ ( cot x ) log ( sin x ) log 4 ( cos x ) ] d x \displaystyle \int_0^{\frac{\pi}{2}} \bigg [ ( \cot{x} )\ \log{(\sin x)} \ \log^4{(\cos x)} \bigg ] \ dx

For positive integers a , b , c , d , e , f a,b,c,d,e,f , the above integral can be stated in the form of

a b ζ c ( d ) π e f \frac{a}{b}\zeta^c {(d)} -\frac {\pi^e}{f}

Where a , b a,b are coprime. Find f e d c b a f-e-d-c-b-a .

Details and Assumptions

  • ζ ( x ) \zeta (x) denote the Riemann Zeta Function: ζ ( x ) = k = 1 1 k x \zeta (x) = \displaystyle \sum_{k=1}^\infty \frac 1 {k^x}

This problem is inspired by this


The answer is 3330.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshay Bodhare
Mar 24, 2015

The answer is 3 16 ζ 2 ( 3 ) π 6 3360 \frac{3}{16} \zeta^2 (3) -\frac{\pi^6}{3360}

0 π 2 [ ( cot x ) log ( sin x ) log 4 ( cos x ) ] d x = 1 2 6 0 1 log x x log 4 ( 1 x ) d x \int_0^{\frac{\pi}{2}}[(\cot x)\log (\sin x) \log^4 (\cos x)]dx=\frac {1}{2^6}\displaystyle\int_0^1 \frac {\log x}{x} \log^4 (1-x)dx

1 2 6 0 1 log x x log 4 ( 1 x ) d x = 1 2 6 0 1 log ( 1 x ) 1 x log 4 ( x ) d x \frac {1}{2^6}\displaystyle\int_0^1 \frac {\log x}{x} \log^4 (1-x)dx=\frac {1}{2^6}\displaystyle\int_0^1 \frac {\log (1-x)}{1-x} \log^4 (x)dx

Let,

I s = 0 1 log ( 1 x ) 1 x log s ( x ) d x I_s=\displaystyle\int_0^1 \frac {\log (1-x)}{1-x} \log^s (x)dx

H n H n 1 = 1 n H_n-H_{n-1}=\frac {1}{n}

n = 1 H n x n x n = 1 H n 1 x n 1 = n = 1 x n n \sum_{n=1}^{\infty}H_nx^n-x\sum_{n=1}^{\infty}H_{n-1}x^{n-1}=\sum_{n=1}^{\infty}\frac {x^n}{n}

n = 1 H n x n = log ( 1 x ) 1 x \therefore \displaystyle\sum_{n=1}^{\infty}H_nx^n=-\frac{\log (1-x)}{1-x}

where, H 0 = 0 H_0=0

I s = n = 1 H n 0 1 x n log s ( x ) d x I_s=-\displaystyle\sum_{n=1}^{\infty}H_n\int_0^1 x^n \log^s (x)dx

Now, 0 1 x n d x = 1 n + 1 \displaystyle\int_0^1 x^n dx=\frac{1}{n+1}

Differentiating above result with respect to n ,s times,

0 1 x n log s ( x ) d x = ( 1 ) s s ! ( n + 1 ) s + 1 \displaystyle\int_0^1 x^n \log^s (x)dx=(-1)^s \frac{s!}{(n+1)^{s+1}}

I s = ( 1 ) s + 1 s ! n = 1 H n ( n + 1 ) s + 1 \therefore I_s=(-1)^{s+1}s!\displaystyle\sum_{n=1}^{\infty}\frac{H_n }{(n+1)^{s+1}}

I s = ( 1 ) s + 1 s ! n = 0 H n + 1 ( n + 1 ) s + 1 1 ( n + 1 ) s + 2 I_s=(-1)^{s+1}s!\displaystyle\sum_{n=0}^{\infty}\frac{H_{n+1} }{(n+1)^{s+1}}-\frac{1}{(n+1)^{s+2}}

I s = ( 1 ) s + 1 s ! ( n = 1 H n ( n ) s + 1 ζ ( s + 2 ) ) I_s=(-1)^{s+1}s!(\displaystyle\sum_{n=1}^{\infty}\frac{H_{n} }{(n)^{s+1}}-\zeta (s+2))

Now ,we use ,

n = 1 H n ( n ) q = ( 1 + q 2 ) ζ ( q + 1 ) 1 2 k = 1 q 2 ζ ( k + 1 ) ζ ( q k ) \displaystyle\sum_{n=1}^{\infty}\frac{H_{n} }{(n)^{q}}=(1+\frac{q}{2})\zeta (q+1)-\frac {1}{2}\displaystyle\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k)

Now putting all values together,we get the answer.Proof for above identity can be found here

The solution to this problem is taken from Mr.Tunk-Fey Ariawan's solution to this problem

Could you explain the 1st step please?

Ashley Shamidha - 5 years, 11 months ago

Log in to reply

Substitute sin 2 x = t \sin ^2 x = t

Akshay Bodhare - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...