Inspired by Sai Ram

Algebra Level 4

The sum of the sequence 0.1 , 0.11 , 0.111 , 0.1111 , 0.1 , 0.11 , 0.111 , 0.1111 , \ldots upto n n terms is given by e a ( n 1 b ( 1 ( 1 c ) d n ) ) \large \frac{e}{a} ( n-\frac{1}{b}(1-(\frac{1}{c})^{dn} )) for positive integers a , b , c , d a,b,c,d and e e with gcd ( a , e ) = 1 \gcd(a,e) = 1 .

Find the value of a + b + c + d + e a+b+c+d+e .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rama Devi
Jul 25, 2015

t n = k = 1 n 1 1 0 k = 1 10 k = 0 n 1 1 1 0 k = 1 10 ( 1 ( 1 10 ) n 9 10 ) = 1 9 ( 1 1 1 0 n ) t_n = \displaystyle \sum_{k=1}^n \frac{1}{10^k} = \frac{1}{10} \sum_{k=0}^{n-1} \frac{1}{10^k} = \frac{1}{10} \left( \dfrac{1 - \left(\frac{1}{10}\right)^n}{\frac{9}{10}} \right) = \frac{1}{9} \left(1 - \frac{1}{10^n} \right)

k = 1 n t n = 1 9 k = 1 n ( 1 1 1 0 k ) = 1 9 ( n 1 10 k = 0 n 1 1 1 0 k ) = 1 9 ( n 1 10 ( 1 1 1 0 k 9 10 ) ) = 1 9 ( n 1 9 ( 1 ( 1 10 ) n ) ) \begin{aligned} \sum_{k=1}^n t_n & = \frac{1}{9} \sum_{k=1}^n \left(1 - \frac{1}{10^k} \right) \\ & = \frac{1}{9} \left(n - \frac{1}{10} \sum_{k=0}^{n-1} \frac{1}{10^k} \right) \\ & = \frac{1}{9} \left(n - \frac{1}{10} \left(\frac{1 - \frac{1}{10^k}}{\frac{9}{10}} \right) \right) \\ & = \frac{1}{9} \left(n - \frac{1}{9} \left(1 - \left(\frac{1}{10}\right)^n \right) \right) \end{aligned}

a + b + c + d + e = 9 + 9 + 10 + 1 + 1 = 30 \Rightarrow a + b + c + d + e = 9 + 9 +10 + 1 + 1 = \boxed{30}

Very similar to Chew Seong Sir's solution to a similar problem.

Vishwak Srinivasan - 5 years, 10 months ago

Log in to reply

Yes I know that

Rama Devi - 5 years, 10 months ago

Why don't you upvote

Rama Devi - 5 years, 10 months ago

What happens ?

Sai Ram - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...