Inspired by Sakanksha Deo

Algebra Level 4

The sum of the series 6 , 66 , 666 , 6666....... 6 , 66 , 666 , 6666 ....... is given by e a ( b n + 1 c n d ) \large \frac{e}{a} ( b^{ n + 1 } - cn - d ) .Find a + b + c + d + e a + b + c + d + e

a, b, c, d, e are positive integers. e and a are coprime.


The answer is 58.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sai Ram
Jul 22, 2015

Here is a tricky part in this problem. Let's investigate that. 6 + 66 + 666 + 6+66+666 + \ldots We will try to convert it in the form so that we may create a G P GP in it. 2 3 ( 9 + 99 + 999 + ) \dfrac{2}{3}(9+99+999+ \ldots) 2 3 ( 10 1 + 1 0 2 1 + 1 0 3 1 + ) \dfrac{2}{3}(10-1+10^{2}-1+10^{3} - 1 + \ldots) Now we have created a G P GP . Now it can be summed easily using formula for finite G P GP summation. 2 3 ( r = 1 n ( 1 0 r ) n ) \dfrac{2}{3}(\sum_{r=1}^{n}( 10^{r} ) - n) 2 3 ( 10 ( 1 0 n 1 10 1 ) n ) \dfrac{2}{3} (\dfrac{10(10^{n}-1}{10-1}) - n) Now we just have to manipulate the expression to get the expression in desired format. 2 3 1 0 n + 1 9 n 10 9 \dfrac{2}{3}\dfrac{10^{n+1} - 9n-10}{9} 2 27 ( 1 0 n + 1 9 n 10 ) \dfrac{2}{27}(10^{n+1} - 9n-10)

Therefore 27 + 10 + 9 + 10 + 2 = 58 27+10+9+10+2=\boxed{58}

This is the best solution

Rama Devi - 5 years, 10 months ago

Log in to reply

Thanks ma'am

Sai Ram - 5 years, 10 months ago
Garrett Clarke
Jul 21, 2015

6 + 66 + 666 + 6666 + . . . = 6 ( 1 + 11 + 111 + 1111 + . . . ) 6+66+666+6666+...=6(1+11+111+1111+...)

Partial sums of the part in the parentheses: { 1 , 12 , 123 , 1234... } \{1,12,123,1234...\}

Formula for the n n th partial sum via a recurrence relation:

a ( n ) = 10 a ( n 1 ) + n a(n)=10a(n-1)+n

This equation is inhomogeneous. Let's turn it into a homogenous recurrence relation and solve by substituting a ( n ) = r x a(n)=r^x :

a ( n ) = 10 a ( n 1 ) + n a(n)=10a(n-1)+n , a ( n 1 ) = 10 a ( n 2 ) + n 1 a(n-1)=10a(n-2)+n-1

a ( n ) a ( n 1 ) = ( 10 a ( n 1 ) + n ) ( 10 a ( n 2 ) + n 1 ) a(n)-a(n-1)=(10a(n-1)+n)-(10a(n-2)+n-1)

a ( n ) = 11 a ( n 1 ) 10 a ( n 2 ) + 1 a(n)=11a(n-1)-10a(n-2)+1 , a ( n 1 ) = 11 a ( n 2 ) 10 a ( n 3 ) + 1 a(n-1)=11a(n-2)-10a(n-3)+1

a ( n ) a ( n 1 ) = ( 11 a ( n 1 ) 10 a ( n 2 ) + 1 ) ( 11 a ( n 2 ) 10 a ( n 3 ) + 1 ) a(n)-a(n-1)=(11a(n-1)-10a(n-2)+1)-(11a(n-2)-10a(n-3)+1)

a ( n ) = 12 a ( n 1 ) 21 a ( n 2 ) + 10 a ( n 3 ) a(n)=12a(n-1)-21a(n-2)+10a(n-3) , replace a ( n ) = r x a(n)=r^x

r x = 12 r x 1 21 r x 2 + 10 r x 3 r^x=12r^{x-1}-21r^{x-2}+10r^{x-3}

r 3 12 r 2 21 r + 10 = 0 r^3-12r^2-21r+10=0

( r 10 ) ( r 1 ) 2 = 0 { 1 , 10 } (r-10)(r-1)^2=0\Longrightarrow\{1,10\}

We now must take our values of r r and use them to create a general formula for a ( n ) a(n) :

a ( n ) = c 1 1 0 n + c 2 x 1 n + c 3 1 n = c 1 1 0 n + c 2 n + c 3 a(n)=c_110^n+c_2x1^n+c_31^n=c_110^n+c_2n+c_3

Knowing that a ( 1 ) = 1 a(1)=1 , a ( 2 ) = 12 a(2)=12 , and a ( 3 ) = 123 a(3)=123 , let's solve for c 1 c_1 , c 2 c_2 , and c 3 c_3 :

10 c 1 + c 2 + c 3 = 1 10c_1+c_2+c_3=1

100 c 1 + 2 c 2 + c 3 = 12 100c_1+2c_2+c_3=12

1000 c 1 + 3 c 2 + c 3 = 123 1000c_1+3c_2+c_3=123

90 c 1 + c 2 = 11 90c_1+c_2=11

900 c 1 + c 2 = 111 900c_1+c_2=111

810 c 1 = 100 c 1 = 10 81 810c_1=100\Longrightarrow c_1=\frac{10}{81}

90 ( 10 81 ) + c 2 = 11 c 2 = 1 9 90\left(\frac{10}{81}\right)+c_2=11\Longrightarrow c_2=-\frac{1}{9}

10 ( 10 81 ) 1 9 + c 3 = 1 c 3 = 10 81 10\left(\frac{10}{81}\right)-\frac{1}{9}+c_3=1\Longrightarrow c_3=-\frac{10}{81}

Plugging into our equation:

a ( n ) = 10 81 1 0 n 9 81 n 10 81 = 1 81 ( 1 0 n + 1 9 n 10 ) a(n)=\frac{10}{81}10^n-\frac{9}{81}n-\frac{10}{81}=\frac{1}{81}(10^{n+1}-9n-10)

Now that we have our formula for the partial sums of the part within the parentheses, our answer is simply 6 6 times a ( n ) a(n) :

6 a ( n ) = 6 81 ( 1 0 n + 1 9 n 10 ) = 2 27 ( 1 0 n + 1 9 n 10 ) 6a(n)=\frac{6}{81}(10^{n+1}-9n-10)=\frac{2}{27}(10^{n+1}-9n-10)

Finally, we get a = 27 a=27 , b = 10 b=10 , c = 9 c=9 , d = 10 d=10 , and e = 2 e=2 . Therefore, our answer must be:

27 + 10 + 9 + 10 + 2 = 58 27+10+9+10+2=\boxed{58}

Is there a more easy way ?

Sai Ram - 5 years, 10 months ago

Your solution is not as easy as mine.

Sai Ram - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...