Inspired by Satyajit Mohanty

Calculus Level 5

1 1 2 + 1 3 1 5 + 1 6 1 7 + 1 9 1 10 + 1 11 1 13 + 1 14 1 15 + 1 17 1-\frac { 1 }{ 2 } +\frac { 1 }{ 3 } -\frac { 1 }{ 5 } +\frac { 1 }{ 6 } -\frac { 1 }{ 7 } +\frac { 1 }{ 9 } -\frac { 1 }{ 10 } +\frac { 1 }{ 11 } -\frac { 1 }{ 13 } +\frac { 1 }{ 14 } -\frac { 1 }{ 15 } +\frac { 1 }{ 17 } -\dots If the above expression can be expressed as ( A B C ) π D E \dfrac { (A\sqrt { B } -C){ \pi }^{ D } }{ E } for positive integers A , B , C , D A,B,C,D and E E . Find the minimum value of A × B × C × D × E A\times B \times C \times D \times E


Inspired by Problem 1 , Problem 2 , Problem 3 .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the given expression be S S , then,

S = 1 1 2 + 1 3 1 5 + 1 6 1 7 + 1 9 1 10 + 1 11 1 13 + 1 14 1 15 + 1 17 . . . = 2 ( 1 2 [ 1 2 + 1 1 ] 1 2 + 1 3 2 + 1 4 ( 0 ) 1 5 2 + [ 1 2 + 1 1 ] 1 6 1 7 2 + 1 8 ( 0 ) + 1 9 2 . . . ) = 2 ( 1 2 + 1 2 + 1 3 2 + 1 4 ( 0 ) 1 5 2 1 6 1 7 2 + 1 8 ( 0 ) + 1 9 2 . . . ) ( 1 + 2 ) ( 1 2 1 6 + 1 10 . . . ) = 2 ( sin π 4 + sin π 2 2 + sin 3 π 4 3 + sin π 4 + sin 5 π 4 5 + sin 3 π 2 6 + sin 7 π 4 7 + . . . ) 1 + 2 2 ( 1 1 3 + 1 5 . . . ) = 2 ( n = 1 e i n π 4 n ) 1 + 2 2 n = 0 ( 1 ) n 2 n + 1 = 2 ( ln ( 1 e i π 4 ) ) 1 + 2 2 ( π 2 cot 1 ( 1 ) ) = 2 ln ( 1 cos π 4 i sin π 4 ) 1 + 2 2 ( π 2 π 4 ) = 2 ln ( 1 1 2 i 1 2 ) 1 + 2 2 ( π 4 ) = 2 ln ( 2 2 e i tan 1 1 2 1 ) ( 1 + 2 ) π 8 = 2 ln ( 2 2 e i 3 π 8 ) ( 1 + 2 ) π 8 = 3 2 π 8 ( 1 + 2 ) π 8 = ( 2 2 1 ) π 8 \begin{aligned} S & = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{13} + \frac{1}{14} - \frac{1}{15} + \frac{1}{17} -... \\ & = \small \sqrt{2}\left(\frac{1}{\sqrt{2}} - \color{#3D99F6}{\left[\frac{1}{\sqrt{2}} +1 - 1 \right] \frac{1}{2}} + \frac{1}{3\sqrt{2}}+ \frac{1}{4}(0) - \frac{1}{5\sqrt{2}} + \color{#3D99F6}{\left[\frac{1}{\sqrt{2}} +1 - 1 \right]\frac{1}{6}} - \frac{1}{7\sqrt{2}} + \frac{1}{8}(0) + \frac{1}{9\sqrt{2}}- ...\right) \\ & = \small \sqrt{2}\left(\frac{1}{\sqrt{2}} + \color{#3D99F6}{\frac{1}{2}} + \frac{1}{3\sqrt{2}}+ \frac{1}{4}(0) - \frac{1}{5\sqrt{2}} - \color{#3D99F6}{\frac{1}{6}} - \frac{1}{7\sqrt{2}} + \frac{1}{8}(0) + \frac{1}{9\sqrt{2}}- ...\right) - \color{#3D99F6}{\left(1+\sqrt{2}\right)\left( \frac{1}{2} - \frac{1}{6} + \frac{1}{10} - ... \right)} \\ & = \small \sqrt{2}\left(\sin \frac{\pi}{4} + \frac{\sin \frac{\pi}{2}}{2} + \frac{\sin \frac{3\pi}{4}}{3}+ \frac{\sin \pi}{4} + \frac{\sin \frac{5\pi}{4}}{5} + \frac{\sin \frac{3\pi}{2}}{6} + \frac{\sin \frac{7\pi}{4}}{7} + ...\right) - \frac{1+\sqrt{2}}{2}\left( 1 - \frac{1}{3} + \frac{1}{5} - ... \right) \\ & = \sqrt{2}\Im \left( \color{#3D99F6}{\sum_{n=1}^\infty \frac{e^{i\frac{n\pi}{4}}}{n}} \right) - \frac{1+\sqrt{2}}{2}\color{#D61F06}{\sum_{n=0}^\infty \frac{(-1)^n}{2n+1}} \\ & = \sqrt{2}\Im \left( \color{#3D99F6}{-\ln \left(1-e^{i\frac{\pi}{4}}\right)} \right) - \frac{1+\sqrt{2}}{2}\left(\color{#D61F06}{\frac{\pi}{2}-\cot^{-1} (1)}\right) \\ & = \color{#3D99F6}{-}\sqrt{2}\Im \color{#3D99F6}{\ln \left(1-\cos \frac{\pi}{4}-i\sin \frac{\pi}{4} \right)} - \frac{1+\sqrt{2}}{2}\left(\color{#D61F06}{\frac{\pi}{2}-\frac{\pi}{4}}\right) \\ & = \color{#3D99F6}{-}\sqrt{2}\Im \color{#3D99F6}{\ln \left(1-\frac{1}{\sqrt{2}}-i\frac{1}{\sqrt{2}} \right)} - \frac{1+\sqrt{2}}{2}\left(\color{#D61F06}{\frac{\pi}{4}}\right) \\ & = -\sqrt{2}\Im \ln \left(\sqrt{2-\sqrt{2}}e^{i\tan^{-1}\frac{-1}{\sqrt{2}-1}} \right) - \frac{(1+\sqrt{2})\pi}{8} \\ & = -\sqrt{2}\Im \ln \left(\sqrt{2-\sqrt{2}}e^{-i\frac{3\pi}{8}} \right) - \frac{(1+\sqrt{2})\pi}{8} \\ & = \frac{3\sqrt{2}\pi}{8} - \frac{(1+\sqrt{2})\pi}{8} \\ & = \frac{(2\sqrt{2}-1)\pi}{8} \end{aligned}

A × B × C × D × E = 2 × 2 × 1 × 1 × 8 = 32 \Rightarrow A \times B \times C \times D \times E = 2 \times 2 \times 1 \times 1 \times 8 = \boxed{32}

@Rajorshi Chaudhuri Can you add a link to the inspiration? Thanks!

Calvin Lin Staff - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...