Inspired by Satyajit Mohanty

S ( p ) = n = 1 p 1 ( 3 n 2 p 3 n 2 p ) \large S(p)=\sum _{ n=1 }^{ p-1 }{ \left( \left\lfloor \frac { 3n^{ 2 } }{ p } \right\rfloor -3\left\lfloor \frac { { n }^{ 2 } }{ p } \right\rfloor \right) }

Find S ( 101 ) S(101) .

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jason Martin
Apr 16, 2018

Notice that if x y m o d p x \equiv y \mod p for least positive y y , then x p = x p y p \left\lfloor \frac{x}{p} \right\rfloor=\frac{x}{p}-\frac{y}{p} . Furthermore, we will be using the Legendre Symbol, denoted ( k p ) \left(\frac{k}{p}\right) .

Now choose least positive a n a_n and b n b_n such that 3 n 2 a n m o d p 3n^2 \equiv a_n \mod p and n 2 b n m o d p n^2 \equiv b_n \mod p for all n n , 1 n p 1 1 \leq n \leq p-1 . Then we have S ( p ) = n = 1 p 1 ( 3 n 2 p 3 n 2 p ) = \displaystyle S(p)=\sum_{n=1}^{p-1} \left( \left \lfloor \frac{3n^2}{p} \right \rfloor - 3 \left \lfloor \frac{n^2}{p} \right \rfloor \right)=

n = 1 p 1 ( 3 n 2 p a n p 3 n 2 p + 3 b n p ) = \displaystyle \sum_{n=1}^{p-1} \left( \frac{3n^2}{p} - \frac{a_n}{p} -\frac{3n^2}{p} + \frac{3b_n}{p}\right)=

n = 1 p 1 ( 3 b n p a n p ) = \displaystyle \sum_{n=1}^{p-1} \left( \frac{3b_n}{p} - \frac{a_n}{p}\right)=

3 p n = 1 p 1 b n 1 p n = 1 p 1 a n \displaystyle \frac{3}{p}\sum_{n=1}^{p-1} b_n - \frac{1}{p}\sum_{n=1}^{p-1} a_n

Here notice that b n b_n cycles through the quadratic residues modulo p p twice (since b n = b p n b_n=b_{p-n} ). Furthermore, since p = 101 p=101 and by Quadratic Reciprocity ( 3 101 ) = ( 101 3 ) = ( 2 3 ) = 1 \left(\frac{3}{101}\right)=\left(\frac{101}{3}\right)=\left(\frac{2}{3}\right)=-1 , we know a n a_n must similarly cycle through the quadratic nonresidues twice. Therefore, our sum becomes

6 p ( b p ) = 1 b 2 p ( a p ) = 1 a \displaystyle \frac{6}{p}\sum_{\left(\frac{b}{p}\right)=1} b - \frac{2}{p}\sum_{\left(\frac{a}{p}\right)=-1} a

Due to the known result that ( b p ) = 1 b = p ( p 1 ) 4 \sum_{\left(\frac{b}{p}\right)=1} b=\frac{p(p-1)}{4} when p 1 m o d 4 p \equiv 1 \mod 4 , our sum becomes

6 p ( p ( p 1 ) 4 ) 2 p ( p ( p 1 ) 4 ) = \displaystyle \frac{6}{p}\left(\frac{p(p-1)}{4}\right) - \frac{2}{p}\left(\frac{p(p-1)}{4}\right)=

3 ( p 1 ) 2 ( p 1 ) 2 = p 1 \displaystyle \frac{3(p-1)}{2} - \frac{(p-1)}{2}=p-1

Since p = 101 p=101 , we have S ( 101 ) = 100 S(101)=\boxed{100}

Proof that

( b p ) = 1 b = p ( p 1 ) 4 \displaystyle \sum_{\left(\frac{b}{p}\right)=1} b=\frac{p(p-1)}{4} when p 1 m o d 4 p \equiv 1 \mod 4

Proof: Since p 1 m o d 4 p \equiv 1 \mod 4 , we know ( 1 p ) = 1 \left(\frac{-1}{p}\right)=1 . Thus, for each quadratic residue b b , we know p b p-b is another distinct quadratic residue. Since there are p 1 2 \frac{p-1}{2} such b b , there are p 1 4 \frac{p-1}{4} pairs ( b , p b ) (b, p-b) , each of which sum to p p . Thus, grouping these pairs together, we have

( b p ) = 1 b = ( b , p b ) p = p ( p 1 ) 4 \displaystyle \sum_{\left(\frac{b}{p}\right)=1} b= \sum_{(b, p-b)} p=\frac{p(p-1)}{4}

Corollary ( a p ) = 1 a = p ( p 1 ) 4 \displaystyle \sum_{\left(\frac{a}{p}\right)=-1} a=\frac{p(p-1)}{4}

Since c = 1 p 1 c = p ( p 1 ) 2 \displaystyle \sum_{c=1}^{p-1} c= \frac{p(p-1)}{2} , we have

( a p ) = 1 a = c = 1 p 1 c ( b p ) = 1 b = p ( p 1 ) 2 p ( p 1 ) 4 = p ( p 1 ) 4 \displaystyle \sum_{\left(\frac{a}{p}\right)=-1} a=\sum_{c=1}^{p-1} c - \sum_{\left(\frac{b}{p}\right)=1} b= \frac{p(p-1)}{2} - \frac{p(p-1)}{4}=\frac{p(p-1)}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...