tan ( x − 3 0 ∘ ) tan ( x + 1 2 0 ∘ ) = 2 1 1
If x is a solution to the above equation and cos ( 4 x ) = b a , where a and b are coprime positive integers, then find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nicely done.
Good use of the half angle tangent substitution , which is often forgotten about.
done just the same way :)
Using the identity tan ( x + y ) = 1 − tan ( x ) tan ( y ) tan ( x ) + tan ( y ) , and the facts that tan ( 1 2 0 ∘ ) = − 3 and tan ( 3 0 ∘ ) = 3 1 , the given equation can be written as
1 + 3 tan ( x ) tan ( x ) − 3 1 1 + 3 tan ( x ) tan ( x ) − 3 = 2 1 1
⟹ ( 1 + 3 tan ( x ) ) ( 3 tan ( x ) − 1 ) ( tan ( x ) − 3 ) ( tan ( x ) + 3 ) = 3 tan 2 ( x ) − 1 tan 2 ( x ) − 3 = 2 1 1
⟹ 2 tan 2 ( x ) − 6 = 3 3 tan 2 ( x ) − 1 1 ⟹ tan 2 ( x ) = 3 1 5 .
Now cos ( 4 x ) = 2 cos 2 ( 2 x ) − 1 , and
cos ( 2 x ) = 2 cos 2 ( x ) − 1 = sec 2 ( x ) 2 − 1 = 1 + tan 2 ( x ) 2 − 1 =
1 + 3 1 5 2 − 1 = 1 8 3 1 − 1 = 1 8 1 3 .
Thus cos ( 4 x ) = 2 ∗ ( 1 8 1 3 ) 2 − 1 = 1 6 2 1 6 9 − 1 = 1 6 2 7 ,
and so a + b = 7 + 1 6 2 = 1 6 9 .
tan120 = negative sqrt3
Log in to reply
Thanks for catching the typo; fortunately I used the correct value in the actual calculations.
Did exactly the same. Nice problem btw.
Nicely done
And what was the inspiring problem sir?
Log in to reply
The "inspiring" problem has been deleted, but it was the same equation except that the RHS was 2 3 instead of 2 1 1 . That equation had no real solutions, (since tan 2 ( x ) turned out to be negative), which led to its deletion, but I still liked Shivamani's idea.
If tan ( x − 3 0 ) tan ( x + 1 2 0 ) = n m
Then by ratio and proportions we have
m − n m + n = tan ( x + 1 2 0 ) − tan ( x − 3 0 ) tan ( x + 1 2 0 ) + tan ( x − 3 0 )
= cos ( x + 1 2 0 ) sin ( x + 1 2 0 ) − cos ( x − 3 0 ) sin ( x − 3 0 ) cos ( x + 1 2 0 ) sin ( x + 1 2 0 ) + cos ( x − 3 0 ) sin ( x − 3 0 )
= cos ( x − 3 0 ) cos ( x + 1 2 0 ) sin ( x + 1 2 0 ) cos ( x − 3 0 ) − sin ( x − 3 0 ) cos ( x + 1 2 0 ) cos ( x − 3 0 ) cos ( x + 1 2 0 ) sin ( x + 1 2 0 ) cos ( x − 3 0 ) + sin ( x − 3 0 ) cos ( x + 1 2 0 )
= sin ( x + 1 2 0 ) cos ( x − 3 0 ) − sin ( x − 3 0 ) cos ( x + 1 2 0 ) sin ( x + 1 2 0 ) cos ( x − 3 0 ) + sin ( x − 3 0 ) cos ( x + 1 2 0 )
= sin ( 1 5 0 ) sin ( 2 x + 9 0 ) = 2 sin ( 2 x + 9 0 )
= 2 ( sin 2 x cos 9 0 + sin 9 0 cos 2 x ) = 2 cos 2 x
∴ cos 2 x = 2 ( m − n ) m + n
∴ cos 4 x = 2 ( cos 2 x ) 2 − 1 = 2 × ( 1 8 1 3 ) 2 − 1 = 1 6 2 7
Brian Charlesworth How's this?
Log in to reply
Nice approach. :)
Log in to reply
Thank you.That mine question had flaws but you have posted perfect question.
did the same WAY!
[tan(x + 120)]/[tan(x - 30)] = {[sin(x + 120)]/[cos(x + 120)]} {[cos(x - 30)]/[sin(x - 30)]} = [4 cos^2(x) - 1]/[4 cos(2(x) - 3] = 11/2,so cos^2(x) = 31/36. cos(4x) = 8 cos^4(x) - 8 cos^2(x) + 1 = 8 (31/36)^2 - 8*(31/36) + 1 = (7688 - 8928 + 1296)/1296 = 56/1296 = 7/162, and 7 + 162 = 169
Problem Loading...
Note Loading...
Set Loading...
We note that:
tan ( x − 3 0 ∘ ) ⇒ tan ( x − 3 0 ∘ ) tan ( x + 1 2 0 ∘ ) ⇒ − 2 tan 2 x − 6 ⇒ tan 2 x = cos ( x − 3 0 ∘ ) sin ( x − 3 0 ∘ ) = sin ( 1 2 0 ∘ − x ) cos ( 1 2 0 ∘ − x ) = − sin ( x − 1 2 0 ∘ ) cos ( x − 1 2 0 ∘ ) = − cot ( x − 1 2 0 ∘ ) = − tan ( x + 1 2 0 ∘ ) tan ( x − 1 2 0 ∘ ) = − 1 + 3 tan x tan x − 3 ˙ 1 − 3 tan x tan x + 3 = − 1 − 3 tan 2 x tan 2 x − 3 = 2 1 1 = 1 1 − 3 3 tan 2 x = 3 1 5
We know that:
cos 2 x ⇒ cos 4 x = 1 + tan 2 x 1 − tan 2 x = 1 + 3 1 5 1 − 3 1 5 = 3 6 2 6 = 1 8 1 3 = 2 cos 2 2 x − 1 = 2 ( 1 8 1 3 ) 2 − 1 = 1 6 2 7
⇒ a + b = 7 + 1 6 2 = 1 6 9