Inspired by Shivamani Patil

Geometry Level 3

tan ( x + 12 0 ) tan ( x 3 0 ) = 11 2 \dfrac{\tan(x + 120^{\circ})}{\tan(x - 30^{\circ})} = \dfrac{11}{2}

If x x is a solution to the above equation and cos ( 4 x ) = a b , \cos(4x) = \dfrac{a}{b}, where a a and b b are coprime positive integers, then find a + b . a + b.


The answer is 169.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jun 16, 2015

We note that:

tan ( x 3 0 ) = sin ( x 3 0 ) cos ( x 3 0 ) = cos ( 12 0 x ) sin ( 12 0 x ) = cos ( x 12 0 ) sin ( x 12 0 ) = cot ( x 12 0 ) tan ( x + 12 0 ) tan ( x 3 0 ) = tan ( x + 12 0 ) tan ( x 12 0 ) = tan x 3 1 + 3 tan x ˙ tan x + 3 1 3 tan x = tan 2 x 3 1 3 tan 2 x = 11 2 2 tan 2 x 6 = 11 33 tan 2 x tan 2 x = 5 31 \begin{aligned} \tan{(x-30^\circ)} & = \dfrac{\sin{(x-30^\circ)}}{\cos{(x-30^\circ)}} = \dfrac{\cos{(120^\circ-x)}} {\sin{(120^\circ-x)}} \\ & =\dfrac{\cos{(x-120^\circ)}} {-\sin{(x-120^\circ)}} = - \cot{(x-120^\circ)} \\ \Rightarrow \dfrac{\tan{(x+120^\circ)} }{\tan{(x-30^\circ)}} & = -\tan{(x+120^\circ)} \tan{(x-120^\circ)} \\ & = - \frac{\tan{x}-\sqrt{3}}{1+\sqrt{3} \tan{x}} \dot{} \frac{\tan{x}+\sqrt{3}}{1-\sqrt{3} \tan{x}} \\ & = - \frac{\tan^2{x}-3}{1-3 \tan^2{x}} = \frac{11}{2} \\ \Rightarrow - 2\tan^2{x} - 6 & = 11 - 33 \tan^2{x} \\ \Rightarrow \tan^2{x} & = \frac{5}{31} \end{aligned}

We know that:

cos 2 x = 1 tan 2 x 1 + tan 2 x = 1 5 31 1 + 5 31 = 26 36 = 13 18 cos 4 x = 2 cos 2 2 x 1 = 2 ( 13 18 ) 2 1 = 7 162 \begin{aligned} \cos{2x} & = \frac{1 - \tan^2{x}}{1+\tan^2{x}} = \frac{1-\frac{5}{31}}{1+\frac{5}{31}} = \frac{26}{36} = \frac{13}{18} \\ \Rightarrow \cos{4x} & = 2\cos^2{2x} - 1 = 2\left( \frac{13}{18} \right)^2 - 1 = \frac{7}{162}\end{aligned}

a + b = 7 + 162 = 169 \Rightarrow a + b = 7 + 162 = \boxed{169}

Moderator note:

Nicely done.

Good use of the half angle tangent substitution , which is often forgotten about.

done just the same way :)

Rehman Hasan Tyeb - 5 years, 12 months ago

Using the identity tan ( x + y ) = tan ( x ) + tan ( y ) 1 tan ( x ) tan ( y ) , \tan(x + y) = \dfrac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}, and the facts that tan ( 12 0 ) = 3 \tan(120^{\circ}) = -\sqrt{3} and tan ( 3 0 ) = 1 3 \tan(30^{\circ}) = \dfrac{1}{\sqrt{3}} , the given equation can be written as

tan ( x ) 3 1 + 3 tan ( x ) tan ( x ) 1 3 1 + tan ( x ) 3 = 11 2 \dfrac{\dfrac{\tan(x) - \sqrt{3}}{1 + \sqrt{3}\tan(x)}}{\dfrac{\tan(x) - \dfrac{1}{\sqrt{3}}}{1 + \dfrac{\tan(x)}{\sqrt{3}}}} = \dfrac{11}{2}

( tan ( x ) 3 ) ( tan ( x ) + 3 ) ( 1 + 3 tan ( x ) ) ( 3 tan ( x ) 1 ) = tan 2 ( x ) 3 3 tan 2 ( x ) 1 = 11 2 \Longrightarrow \dfrac{(\tan(x) - \sqrt{3})(\tan(x) + \sqrt{3})}{(1 + \sqrt{3}\tan(x))(\sqrt{3}\tan(x) - 1)} = \dfrac{\tan^{2}(x) - 3}{3\tan^{2}(x) - 1} = \dfrac{11}{2}

2 tan 2 ( x ) 6 = 33 tan 2 ( x ) 11 tan 2 ( x ) = 5 31 . \Longrightarrow 2\tan^{2}(x) - 6 = 33\tan^{2}(x) - 11 \Longrightarrow \tan^{2}(x) = \dfrac{5}{31}.

Now cos ( 4 x ) = 2 cos 2 ( 2 x ) 1 , \cos(4x) = 2\cos^{2}(2x) - 1, and

cos ( 2 x ) = 2 cos 2 ( x ) 1 = 2 sec 2 ( x ) 1 = 2 1 + tan 2 ( x ) 1 = \cos(2x) = 2\cos^2(x) - 1 = \dfrac{2}{\sec^{2}(x)} - 1 = \dfrac{2}{1 + \tan^{2}(x)} - 1 =

2 1 + 5 31 1 = 31 18 1 = 13 18 . \dfrac{2}{1 + \dfrac{5}{31}} - 1 = \dfrac{31}{18} - 1 = \dfrac{13}{18}.

Thus cos ( 4 x ) = 2 ( 13 18 ) 2 1 = 169 162 1 = 7 162 , \cos(4x) = 2*\left(\dfrac{13}{18}\right)^{2} - 1 = \dfrac{169}{162} - 1 = \dfrac{7}{162},

and so a + b = 7 + 162 = 169 . a + b = 7 + 162 = \boxed{169}.

tan120 = negative sqrt3

Pi Han Goh - 5 years, 12 months ago

Log in to reply

Thanks for catching the typo; fortunately I used the correct value in the actual calculations.

Brian Charlesworth - 5 years, 12 months ago

Did exactly the same. Nice problem btw.

Sanjeet Raria - 5 years, 12 months ago

Nicely done

shivamani patil - 5 years, 12 months ago

And what was the inspiring problem sir?

Sanjeet Raria - 5 years, 11 months ago

Log in to reply

The "inspiring" problem has been deleted, but it was the same equation except that the RHS was 3 2 \frac{3}{2} instead of 11 2 . \frac{11}{2}. That equation had no real solutions, (since tan 2 ( x ) \tan^{2}(x) turned out to be negative), which led to its deletion, but I still liked Shivamani's idea.

Brian Charlesworth - 5 years, 11 months ago
Shivamani Patil
Jun 18, 2015

If tan ( x + 120 ) tan ( x 30 ) = m n \frac { \tan { (x+120) } }{ \tan { (x-30) } } =\frac { m }{ n }

Then by ratio and proportions we have

m + n m n = tan ( x + 120 ) + tan ( x 30 ) tan ( x + 120 ) tan ( x 30 ) \frac { m+n }{ m-n } =\frac { \tan { (x+120) } +\tan { (x-30) } }{ \tan { (x+120) } -\tan { (x-30) } }

= sin ( x + 120 ) cos ( x + 120 ) + sin ( x 30 ) cos ( x 30 ) sin ( x + 120 ) cos ( x + 120 ) sin ( x 30 ) cos ( x 30 ) =\frac { \frac { \sin { (x+120) } }{ \cos { (x+120) } } +\frac { \sin { (x-30) } }{ \cos { (x-30) } } }{ \frac { \sin { (x+120) } }{ \cos { (x+120) } } -\frac { \sin { (x-30) } }{ \cos { (x-30) } } }

= sin ( x + 120 ) cos ( x 30 ) + sin ( x 30 ) cos ( x + 120 ) cos ( x 30 ) cos ( x + 120 ) sin ( x + 120 ) cos ( x 30 ) sin ( x 30 ) cos ( x + 120 ) cos ( x 30 ) cos ( x + 120 ) =\frac { \frac { \sin { (x+120)\cos { (x-30) } +\sin { (x-30)\cos { (x+120) } } } }{ \cos { (x-30) } \cos { (x+120) } } }{ \frac { \sin { (x+120)\cos { (x-30) } -\sin { (x-30)\cos { (x+120) } } } }{ \cos { (x-30) } \cos { (x+120) } } }

= sin ( x + 120 ) cos ( x 30 ) + sin ( x 30 ) cos ( x + 120 ) sin ( x + 120 ) cos ( x 30 ) sin ( x 30 ) cos ( x + 120 ) =\frac { \sin { (x+120)\cos { (x-30) } +\sin { (x-30)\cos { (x+120) } } } }{ \sin { (x+120)\cos { (x-30) } -\sin { (x-30)\cos { (x+120) } } } }

= sin ( 2 x + 90 ) sin ( 150 ) = 2 sin ( 2 x + 90 ) =\frac { \sin { (2x+90) } }{ \sin { (150) } } =2\sin { (2x+90) }

= 2 ( sin 2 x cos 90 + sin 90 cos 2 x ) = 2 cos 2 x =2(\sin { 2x } \cos { 90 } +\sin { 90 } \cos { 2x } )=2\cos { 2x }

cos 2 x = m + n 2 ( m n ) \therefore \cos { 2x } =\frac { m+n }{ 2(m-n) }

cos 4 x = 2 ( cos 2 x ) 2 1 = 2 × ( 13 18 ) 2 1 = 7 162 \therefore \cos { 4x } =2{ (\cos { 2x } ) }^{ 2 }-1=2\times { \left( \frac { 13 }{ 18 } \right) }^{ 2 }-1=\frac { 7 }{ 162 }

Brian Charlesworth How's this?

shivamani patil - 5 years, 12 months ago

Log in to reply

Nice approach. :)

Brian Charlesworth - 5 years, 12 months ago

Log in to reply

Thank you.That mine question had flaws but you have posted perfect question.

shivamani patil - 5 years, 12 months ago

did the same WAY!

Rudresh Tomar - 5 years, 10 months ago
Edwin Gray
Feb 15, 2019

[tan(x + 120)]/[tan(x - 30)] = {[sin(x + 120)]/[cos(x + 120)]} {[cos(x - 30)]/[sin(x - 30)]} = [4 cos^2(x) - 1]/[4 cos(2(x) - 3] = 11/2,so cos^2(x) = 31/36. cos(4x) = 8 cos^4(x) - 8 cos^2(x) + 1 = 8 (31/36)^2 - 8*(31/36) + 1 = (7688 - 8928 + 1296)/1296 = 56/1296 = 7/162, and 7 + 162 = 169

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...