Inspired By Shubhendra Singh

1 2 3 × 3 ! 1 × 3 2 4 × 4 ! + 1 × 3 × 5 2 5 × 5 ! \large \dfrac{1}{2^3 \times3!}-\dfrac{1\times 3}{2^4\times 4!}+\dfrac{1\times3\times5}{2^5\times5!} - \ldots

If the alternating series above equals to A 24 B B + 1 2 \dfrac A{24} - \dfrac B{B+1} \sqrt2 for positive integers A A and B B , find the value of A + B A+B .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Van Lier
Jul 21, 2016

We will Taylor sqrt{(1+x)^3 around x = 0 :

( 1 + x ) 3 = 1 + 3 × x 2 + 3 × x 2 2 2 × 2 ! 3 × x 3 2 3 × 3 ! + 3 × 3 × x 4 2 4 × 4 ! 3 × 3 × 5 × x 5 2 5 × 5 ! + . . . \sqrt{(1+x)^3} = 1 + \dfrac{3 \times x}{2} + \dfrac{3 \times x^2}{2^2 \times 2!} - \dfrac{3 \times x^3}{2^3 \times 3!} + \dfrac{3 \times 3 \times x^4}{2^4 \times 4!} - \dfrac{3 \times 3 \times 5 \times x^5}{2^5 \times 5!} + ... .

With the notation that S S is the given sum, and plugging in 1 for x , we get :

( 2 ) 3 = 23 8 3 × S \sqrt{(2)^3 }= \dfrac{23}{8} - 3 \times S .

Solving for S, we get S = 23 24 2 2 3 S = \dfrac{23}{24} - \dfrac{2 \sqrt{2}}{3} , such that A + B = 25 A + B = 25 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...