Inspired by Siddharth Bhatt

Algebra Level 2

If

x y + y z + z x = 0 , \frac{x}{y} + \frac{y}{z} + \frac{z}{x} = 0,

which of the following is true?


Inspiration

x 3 + y 3 + z 3 = 0 x^3 + y^3 + z^3 = 0 x y 2 + y z 2 + z x 2 = 0 xy^2 + yz^2 + zx^2 = 0 x + y + z = 0 x + y + z = 0 x 2 y + y 2 z + z 2 x = 0 x^2 y + y^2z + z^2 x = 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sravanth C.
Jul 9, 2015

x y + y z + z x = 0 \frac{x}{y} + \frac{y}{z} + \frac{z}{x} = 0

Equalizing the denominators, x 2 z y x z + x y 2 z x y + z 2 y x y z = 0 x 2 z + x y 2 + z 2 y x y z = 0 x 2 z + x y 2 + z 2 y = 0 \frac{x^2z}{yxz} + \frac{xy^2}{zxy} + \frac{z^2y}{xyz} = 0 \\ \dfrac{x^2z+xy^2+z^2y}{xyz} = 0 \\ x^2z+xy^2+z^2y=0

Maybe add a line to explain why x y z 0 xyz \neq 0 ?

Chung Kevin - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...