Inspired by "Sparky" Kesa

Algebra Level 5

Let x , y , z x,y,z be reals such that x + y = k ( y + z ) > 0 x+y=k(y+z)>0 and z + x < 0 z+x<0 . Find the minimum value of t t such that for all k t k \ge t , there always exist x , y , z x, y, z satisfying x y + z + y x + z + z x + y = 1 \dfrac{x}{y+z} +\dfrac{y}{x+z} +\dfrac{z}{x+y}=1 . If min ( t ) = a + b c + d + e f g \text{min}(t)=\dfrac{\sqrt{a+b\sqrt{c}}+d+e\sqrt{f}}{g} (min t t is fully simplified) for positive integers a , b , c , d , e , f , g , a, b, c, d, e, f, g, submit your answer as the product a b c d e f g . abcdefg.


Inspiration.

P/S: Thanks to James Wilson for the conversation.


The answer is 965888.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Jim
Nov 3, 2017

x y + z + y x + z + z x + y = 1 = > ( x + y + z ) ( 1 x + y + 1 y + z + 1 z + x ) = 4 \frac { x }{ y+z } +\frac { y }{ x+z } +\frac { z }{ x+y } =1=>(x+y+z)(\frac { 1 }{ x+y } +\frac { 1 }{ y+z } +\frac { 1 }{ z+x } )=4

Let x + y = a , y + z = b , z + x = c = > ( a + b + c ) ( 1 a + 1 b + 1 c ) = 8 x+y=a,y+z=b,z+x=c=>(a+b+c)(\frac { 1 }{ a } +\frac { 1 }{ b } +\frac { 1 }{ c } )=8 (1)

Note that if the set x 0 , y 0 , z 0 { x }_{ 0 },{ y }_{ 0 },{ z }_{ 0 } satisfies the original equation, so does k x 0 , k y 0 , k z 0 k{ x }_{ 0 },k{ y }_{ 0 },k{ z }_{ 0 } . So WLOG, assume y + z = 1 y+z=1 .

Equation (1) becomes ( k + 1 + c ) ( k + 1 k + 1 c ) = 8 (k+1+c)(\frac { k+1 }{ k } +\frac { 1 }{ c } )=8

= > ( k + 1 + c ) ( c ( k + 1 ) + k ) = 8 c k =>(k+1+c)(c(k+1)+k)=8ck

= > c 2 ( k + 1 ) + c ( k 2 5 k + 1 ) + k ( k + 1 ) = 0 =>{ c }^{ 2 }(k+1)+c({ k }^{ 2 }-5k+1)+k(k+1)=0

= > ( c k + 1 ) 2 + 2 c k + 1 k 2 5 k + 1 2 k + 1 + ( k 2 5 k + 1 ) 2 4 ( k + 1 ) = k 4 14 k 3 + 19 k 2 14 k + 1 4 ( k + 1 ) =>(c\sqrt { k+1 } )^{ 2 }+2c\sqrt { k+1 } \frac { { k }^{ 2 }-5k+1 }{ 2\sqrt { k+1 } } +\frac { { (k }^{ 2 }-5k+1)^{ 2 } }{ 4(k+1) } =\frac { { k }^{ 4 }-14{ k }^{ 3 }+19{ k }^{ 2 }-14k+1 }{ 4(k+1) }

= > ( c k + 1 + k 2 5 k + 1 2 k + 1 ) 2 = k 4 14 k 3 + 19 k 2 14 k + 1 4 ( k + 1 ) =>(c\sqrt { k+1 } +\frac { k^{ 2 }-5k+1 }{ 2\sqrt { k+1 } } )^{ 2 }=\frac { { k }^{ 4 }-14{ k }^{ 3 }+19{ k }^{ 2 }-14k+1 }{ 4(k+1) }

= > ( 2 c ( k + 1 ) + k 2 5 k + 1 ) 2 = k 4 14 k 3 + 19 k 2 14 k + 1 =>(2c(k+1)+{ k }^{ 2 }-5k+1)^{ 2 }={ k }^{ 4 }-14{ k }^{ 3 }+19{ k }^{ 2 }-14k+1 .

Note that for c c to actually exist as a real number, k 4 14 k 3 + 19 k 2 14 k + 1 0 { k }^{ 4 }-14{ k }^{ 3 }+19{ k }^{ 2 }-14k+1 \ge 0 .

Also note that k > 1 k>1 , as k = 1 = > k 4 14 k 3 + 19 k 2 14 k + 1 = 7 k=1=>{ k }^{ 4 }-14{ k }^{ 3 }+19{ k }^{ 2 }-14k+1 = -7 .

= > k 2 14 k + 19 14 k + 1 k 2 0 =>{ k }^{ 2 }-14k+19-\frac { 14 }{ k } +\frac { 1 }{ { k }^{ 2 } } \ge 0

= > ( k + 1 k ) 2 14 ( k + 1 k ) + 17 0 =>{ (k+\frac { 1 }{ k } ) }^{ 2 }-14(k+\frac { 1 }{ k } )+17\ge 0 .

Let k + 1 k = x k+\frac { 1 }{ k }=x .

= > x 2 14 x + 17 0 =>{ x }^{ 2 }-14x+17\ge 0

= > ( x 7 ) 2 32 =>{ (x-7) }^{ 2 }\ge 32

= > x 7 + 4 2 =>x\ge 7+4\sqrt{2}

= > k + 1 k 7 + 4 2 =>k+\frac { 1 }{ k } \ge 7+4\sqrt { 2 }

= > 4 k 2 4 k ( 7 + 4 2 ) + 4 0 =>4{ k }^{ 2 }-4k(7+4\sqrt { 2 } )+4\ge 0

= > ( 2 k ( 7 + 4 2 ) ) 2 77 + 56 2 =>{ (2k-(7+4\sqrt { 2 } )) }^{ 2 }\ge 77+56\sqrt { 2 }

= > k 77 + 56 2 + 7 + 4 2 2 =>k \ge \frac { \sqrt { 77+56\sqrt { 2 } } +7+4\sqrt { 2 } }{ 2 } .

So for all k 77 + 56 2 + 7 + 4 2 2 k \ge \frac { \sqrt { 77+56\sqrt { 2 } } +7+4\sqrt { 2 } }{ 2 } , there always exists x , y , z x,y,z satisfying the original equation.

= > a b c d e f g = 965888 =>abcdefg=965888 .

P/S: Yes, the letter t t wasn't used at all in my solution... I typed it out as I found out that k k can be negative and there still exists a solution (just negate them) but when k = 1 k=1 , there exists no real solution. This is also the main reason I had to claim that k > 1 k>1 to proceed.

Excellent solution! My reasoning on Sharky's problem was definitely flawed. I'll let you know if I can break apart exactly what went wrong.

James Wilson - 3 years, 7 months ago

Log in to reply

I believe it was the fact that I assumed all three partial derivatives were zero. I figured the meat (or all) of the solution set of x y + z + y x + z + z x + y = 1 \frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1 was a connected region. Recall that that equation implies x 2 y + z + y 2 x + z + z 2 x + y = 0 \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0 . But this does not ensure all three partial derivatives of x 2 y + z + y 2 x + z + z 2 x + y \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y} over the same region are zero. That was the flaw in my thinking. The set would have to be "thicker."

James Wilson - 3 years, 7 months ago

Log in to reply

Yeah, haven’t really thought of it :)

Steven Jim - 3 years, 7 months ago

Don't you want to say t > 1 t>1 instead of k > 1 k>1 ?

James Wilson - 3 years, 7 months ago

Log in to reply

Well... Same thing after all :)

Steven Jim - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...