Inspired from Hot Integral-14

Calculus Level 5

0 cos ( 8 x ) ( f ( x ) ) 2 d x = A π B ( Γ ( C D ) ) E \large{\displaystyle \int^{\infty}_{0} \cos (\sqrt{8} x) \left(f(x) \right)^2 dx=\frac{\sqrt{A \pi}}{B} \left(\Gamma \left(\frac{C}{D} \right) \right)^{E}}

where

f ( x ) = 0 cos ( x cosh t ) d t \large{f(x)= \displaystyle \int^{\infty}_{0} \cos ( x \cosh t) dt }

Find A + B + C + D + E A+B+C+D+E


A , B , C , D , E * A,B,C,D,E are positive integers need not be distinct.

C , D * C,D are co prime and A A being square free.

Inspiration


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 9, 2020

This follows by applying a collection of standard results. Firstly f f can be expressed in terms of Bessel functions: f ( x ) = 0 cos ( x cosh t ) d t = 1 2 π Y 0 ( x ) x > 0 f(x) \; = \; \int_0^\infty \cos\big(x \cosh t\big)\,dt \; = \; -\tfrac12\pi Y_0(x) \hspace{2cm} x > 0 while 0 cos ( 2 a x ) Y 0 ( x ) 2 d x = 2 π a K ( 1 a 2 ) a > 1 \int_0^\infty \cos(2ax) Y_0(x)^2\,dx \; = \; \frac{2}{\pi a}K\left(\sqrt{1-a^{-2}}\right) \hspace{2cm} a > 1 where K K is the complete elliptic integral of the first kind. Hence 0 cos ( 2 2 x ) f ( x ) 2 d x = π 2 2 K ( 1 2 ) = π 2 2 × 1 4 π Γ ( 1 4 ) 2 = 2 π 16 Γ ( 1 4 ) 2 \int_0^\infty \cos(2\sqrt{2}x)f(x)^2\,dx \; = \; \frac{\pi}{2\sqrt{2}} K\big(\tfrac{1}{\sqrt{2}}\big) \; = \; \frac{\pi}{2\sqrt{2}} \times \frac{1}{4\sqrt{\pi}}\Gamma\big(\tfrac14\big)^2 \; = \; \frac{\sqrt{2\pi}}{16}\Gamma\big(\tfrac14\big)^2 using a known special value of the function K K . This makes the answer 2 + 16 + 1 + 4 + 2 = 25 2 + 16 + 1 + 4 + 2 = \boxed{25} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...