Inspired from myself!

Algebra Level 4

c = 1 10 b = 1 c a = 1 b a 2 = ? \Large \displaystyle \sum^{10}_{c=1} \sum^{c}_{b=1} \sum^{b}_{a=1}a^{2}= \ ? \


The answer is 3289.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the sum of the expression be S S . Then we have:

S = c = 1 10 b = 1 c a = 1 b a 2 [ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 ] = c = 1 10 b = 1 c b ( b + 1 ) ( 2 b + 1 ) 6 = c = 1 10 b = 1 c 2 b 3 + 3 b 2 + b 6 [ k = 1 n k 3 = ( n ( n + 1 ) 2 ) 2 ] = c = 1 10 1 6 ( 2 ( c ( c + 1 ) 2 ) 2 + 3 c ( c + 1 ) ( 2 c + 1 ) 6 + c ( c + 1 ) 2 ) [ k = 1 n k = n ( n + 1 ) 2 ] = 1 12 c = 1 10 ( c 4 + 2 c 3 + c 2 + 2 c 3 + 3 c 2 + c + c 2 + c ) = 1 12 c = 1 10 ( c 4 + 4 c 3 + 5 c 2 + 2 c ) [ k = 1 n k 4 = 6 n 5 + 15 n 4 + 10 n 3 n 30 ] = 1 12 ( 759990 30 + 4 ( 10 ( 11 ) 2 ) 2 + 5 ( 10 ) ( 11 ) ( 21 ) 6 + 2 ( 10 ) ( 11 ) 2 ) = 1 12 ( 25333 + 12100 + 1925 + 110 ) = 3289 \begin{array} {rll} S & = \displaystyle \sum_{c=1}^{10} \sum_{b=1}^c \sum_{a=1}^b a^2 & \small \displaystyle \color{#3D99F6} {\left[ \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\right]} \\ & = \displaystyle \sum_{c=1}^{10} \sum_{b=1}^c \frac{b(b+1)(2b+1)}{6} \\ & =\displaystyle \sum_{c=1}^{10} \sum_{b=1}^c \frac{2b^3+3b^2+b}{6} & \small \displaystyle \color{#3D99F6} {\left[ \sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2 \right]} \\ & =\displaystyle \sum_{c=1}^{10} \frac{1}{6} \left( 2\left(\frac{c(c+1)}{2} \right)^2 + \frac{3c(c+1)(2c+1)}{6} + \frac{c(c+1)}{2} \right) & \small \displaystyle \color{#3D99F6} {\left[ \sum_{k=1}^n k = \frac{n(n+1)}{2} \right]} \\ & = \displaystyle \frac{1}{12} \sum_{c=1}^{10} \left(c^4+2c^3+c^2 + 2c^3+3c^2+c + c^2+c \right) \\ & = \displaystyle \frac{1}{12} \sum_{c=1}^{10} \left(c^4+4c^3+5c^2+2c \right) & \small \displaystyle \color{#3D99F6} {\left[ \sum_{k=1}^n k^4 = \frac{6n^5+15n^4+10n^3-n}{30} \right]} \\ & = \frac{1}{12} \left(\frac{759990}{30} + 4\left(\frac{10(11)}{2}\right)^2 + \frac{5(10)(11)(21)}{6} + \frac{2(10)(11)}{2} \right) \\ & = \displaystyle \frac{1}{12} \left(25333 + 12100+1925+110 \right) = \boxed{3289} \end{array}

The summation may be simplified a bit using the result k = 1 n k ( k + 1 ) ( k + r ) = n ( n + 1 ) ( n + r ) ( n + r + 1 ) r + 2 \sum_{k=1}^{n}k(k+1)\ldots(k+r)=\frac{n(n+1)\ldots (n+r)(n+r+1)}{r+2} .

Example: b ( b + 1 ) ( 2 b + 1 ) 6 = b ( b + 1 ) ( b + 2 ) 3 b ( b + 1 ) 2 \frac{b(b+1)(2b+1)}{6}=\frac{b(b+1)(b+2)}{3}-\frac{b(b+1)}{2} .

Chan Lye Lee - 5 years, 8 months ago

Log in to reply

Thanks, you are right.

Chew-Seong Cheong - 5 years, 8 months ago

Sir , what is the x x doing in 5 t h 5^{th} and 6 t h 6^{th} line of your solution ?

Akshat Sharda - 5 years, 8 months ago

Log in to reply

Thanks. Typos

Chew-Seong Cheong - 5 years, 8 months ago

Same solution, but now I'm wondering if there is an elegant Combinatoric solution.

Alan Yan - 5 years, 8 months ago

Sir, is there a way to calculate x = 1 n x i \sum \limits_{x=1}^n x^{i} for any integral i i

Krutarth Patel - 5 years, 8 months ago

Log in to reply

You can refer to power sum .

Chew-Seong Cheong - 5 years, 8 months ago

That's how I did but in more messy way .. coasted me 1 trial :)

Ahmed Obaiedallah - 5 years, 8 months ago
Nikola Djuric
Dec 14, 2015

=1+(1+(1+4))+(1+(1+4)+(1+4+9))+ …(1+(1+4)+...+(1+4+9+...+100))= 10×1+9×(1+4)+8×(1+4+9)+...+ 1×(1+4+9+ …+100)= 1×(10+9+8+...+1)+4×(9+8+7+...+1)+ …+100×1=1×10×11/2+4×9×10/2+...+ 100×1×2/2=55+180+324+448+525+ 540+490+384+243+100=235+772+ 1065+874+343=1109+1065+1115=3289

Lu Chee Ket
Oct 9, 2015

s:=0;

FOR c:=1 TO 10 DO

FOR b:=1 TO c DO

FOR a:=1 TO b DO

       s:=s+SQR(a);

Just a simple routine, s = 3289.

In python:

1
sum(sum(sum(k**2 for k in range(1,m+1)) for m in range(1,n+1)) for n in range(1,11))

Abdelhamid Saadi - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...