Inspired From Other

Find the number of ordered pairs of whole numbers ( x , y ) (x,y) satisfying ( x y 7 ) 2 = x 2 + y 2 (xy-7)^2 =x^2 +y^2 .

If all these solutions can be expressed as ( x 1 , y 1 ) , ( x 2 , y 2 ) , , ( x i , y i ) (x_1, y_1) , (x_2 , y_2) , \ldots , (x_i , y_i) , find

x 1 + y 1 + x 2 + y 2 + + x i + y i . x_1 + y_1 + x_2 + y_2 + \cdots + x_i + y_i .


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shauryam Akhoury
Sep 25, 2018

( x y 7 ) 2 = x 2 + y 2 { (xy-7) }^{ 2 }={ x }^{ 2 }+{ y }^{ 2 }

Can be rearranged as

( x y 6 ) 2 + 13 = ( x + y ) 2 { (xy-6) }^{ 2 }+13={ (x+y) }^{ 2 }

Let

( x y 6 ) 2 = a 2 { (xy-6) }^{ 2 }={ a }^{ 2 }

and

( x + y ) 2 = b 2 { (x+y) }^{ 2 }={ b }^{ 2 }

So,

a 2 + 13 = b 2 { a }^{ 2 }+13={ b }^{ 2 }

This has integral solutions,

a = ± 6 a=\pm 6 and b = ± 7 b=\pm 7

Meaning,

x y = 6 ± 6 xy=6\pm 6

and

x + y = ± 7 x+y=\pm 7

These two have 4 whole number solutions,namely,

( 0 , 7 ) , ( 3 , 4 ) , ( 4 , 3 ) , ( 7 , 0 ) (0,7),(3,4),(4,3),(7,0)

Sum of all the solutions is 28 28

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...