An algebra problem by Aaron Jerry Ninan

Algebra Level 4

A function f : R R f:\mathbb{R}\rightarrow \mathbb{R} satisfies the following f ( x ) f ( y ) x y 3 f ( 3 ) = 11. \large \begin{aligned} |f(x)-f(y)| & \leq |x-y|^{3} \\ \\ f(3) & = 11. \end{aligned} Find the value of f ( 2016 ) f(2016) .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 13, 2016

The condition tells us that f ( x ) f ( y ) x y x y 2 \left|\frac{f(x)-f(y)}{x-y}\right| \; \le \; |x-y|^2 and so, letting y y tend to x x , we see that f f is differentiable, with f ( x ) = 0 f'(x)=0 for all x x . Thus f f is constant, making the answer 11 \boxed{11} .

(Edit: This comment is not correct)

But you are assuming that f f is differentiable.

Calvin Lin Staff - 4 years, 7 months ago

Log in to reply

No, I have proved it is. The condition shows that the limit exists.

Mark Hennings - 4 years, 7 months ago

Log in to reply

Ah yes. I misread.

Calvin Lin Staff - 4 years, 7 months ago

If f : R R f:\mathbb{R} \to \mathbb{R} satisfies: f ( x ) f ( y ) x y 3 f ( 3 ) = 11 |f(x) - f(y)| \leq |x - y|^3 \\ f(3) = 11 then f ( x ) = 11 , x R f(x) = 11, \space \forall x \in \mathbb{R} .

Proof .-

ϵ > 0 \forall \epsilon > 0 "very small", n N \exists n \in \mathbb{N} such that 1 n 2 < ϵ \frac{1}{n^2} < \epsilon (Archimedes property). Then, due to triangular inequality f ( 4 ) f ( 3 ) f ( 4 ) f ( 4 1 / n ) + f ( 4 1 / n ) f ( 4 2 / n ) + f ( 4 2 / n ) f ( 4 3 / n ) + . . . + f ( 4 ( n 1 ) / n ) f ( 3 ) |f(4) - f(3)| \leq |f(4) - f(4 - 1/n)| + |f(4 - 1/n) - f(4 - 2/n)| + |f(4 - 2/n) - f(4 - 3/n)| +... + |f(4 - (n-1)/n) - f(3)| \leq n ( 1 n 3 ) = 1 n 2 < ϵ \leq n \cdot (\frac{1}{n^3}) = \frac{1}{n^2} < \epsilon . This implies that f ( 4 ) = f ( 3 ) f(4) = f(3) . With the same reasoning f ( n ) = f ( 3 ) = 11 , n Z f(n) = f(3) = 11, \space \forall n \in \mathbb{Z} . And with a similar reasoning, f ( x ) = 11 , x R f(x) = 11, \space \forall x \in \mathbb{R} .

Nice! Your solution doesn't need to assume that the function is differentiable :)

Calvin Lin Staff - 4 years, 7 months ago

How 1 n 3 \frac{1}{n^3} came here ???

Kushal Bose - 4 years, 7 months ago

Log in to reply

from the first inequality, f ( x ) f ( y ) x y 3 |f(x) - f(y)| \leq |x - y|^3 , for example, f ( 4 1 / n ) f ( 4 2 / n ) 4 1 / n 4 + 2 / n 3 = 1 n 3 |f(4 - 1/n) - f(4 - 2/n)| \leq |4 - 1/n - 4 + 2/n|^3 = \frac{1}{n^3}

Guillermo Templado - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...