( b r a i n ) + ( b r a i n ) 2 d ( b r a i n ) \int (brain ) +(brain)^2d(brain)

Calculus Level 5

Given

I a = 1.0002014 e [ ( cos ( a ln x ) ( 1 x ln x ) ( x ( ln x ) 2 ) + a sin a ln x x ln x ] exp x d x I_{a}=\int_{1.0002014}^{e}\left[\frac{(\cos(a\ln x)(1-x\ln x)}{(x(\ln x)^{2})}+\frac{a\sin a\ln x}{x\ln x}\right]\exp x dx

and

I 1 0 7 I 0 = exp b cos h i exp d f [ 1 cos 1 0 7 ] exp b c , I_{10^{7}}-I_{0} =\frac{\exp b\cos h}{i}-\frac{\exp d}{f}[1-\cos10^{7}] -\frac{\exp b}{c},

find the value of

[ h ( b c ) d f ] . \left[\frac{h(b-c)}{df}\right].

Note: [.] is the greatest integer function.


The answer is 740.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Milun Moghe
Dec 30, 2013

the jist of the problem is to think about a as an independent parameter .If we differenciate the integral with respect to parameter a we with a simplified form of the integral

d I a d a = 1.0002014 e e x d d a [ c o s ( a l n x ) ( 1 x l n x ) x ( l n x ) 2 + a s i n ( a l n x ) x ( l n x ) ] d x \frac{dI_{a}}{da} =\int_{1.0002014}^{e}e^{x}\frac{d}{da}[\frac{cos(alnx)(1-xlnx)}{x(lnx)^{2}}+\frac{asin(alnx)}{x(lnx)}]dx

= 1.0002014 e e x [ s i n ( a l n x ) + a c o s ( a l n x ) x ] d x =\int_{1.0002014}^{e}e^{x}[sin(alnx)+\frac{acos(alnx)}{x}]dx

= e e s i n ( a ) e 1.0002014 s i n ( a l n ( 1.0002014 ) =e^{e}sin(a)-e^{1.0002014}sin(aln(1.0002014)

= e e s i n a e 1.0002014 s i n ( 0.0002014 a ) =e^{e}sina-e^{1.0002014}sin(0.0002014a)

I a = e 1.0002014 c o s 1.0002014 0.0002014 e e c o s a + c I_{a}=\frac{e^{1.0002014}cos1.0002014}{0.0002014}-e^{e}cosa + c

we can the put a=10000000 and 0 to ge the required value b=1.0002014, h=2014,i=0.0002014=c,lnd=1,f=1,

final answer is 740

Title should be " Brilliant and wolfram-alpha go hand in hand " :P

Deepanshu Gupta - 6 years, 2 months ago
Shouvik Das
Mar 29, 2014

Awesome question. Really feeling happy by solving it. Nothing new to say. Tried the same way given in other solution by Milun Moghe...Firstly tried to express it in the form of exp(x)[f(x)+fdash(x)]. then just integrating it to exp(x)*f(x)... After integrating got the function I(a) after putting the values i.e "e" and "1.0002014". Then just substituted the values of "a" by 10 to the power 7 and 0.. then got the answer as: "740.83461". After that [740.83461] = 740. Thus the final answer is "740"..........................

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...