\int

Calculus Level 5

0 ln x 1 + x n d x \color{#3D99F6}\large\displaystyle \int_0^\infty \dfrac{\ln x}{1+x^n}\, dx Find the closed form of the integral above and hence submit your answer as the value of 0 ln x 1 + x x d x 0 ln x 1 + x 3 d x \large\dfrac{\displaystyle \int_0^\infty \dfrac{\ln x}{1+x\sqrt{x}}\, dx}{\displaystyle \int_0^\infty \dfrac{\ln x}{1+x^3}\, dx}


The answer is -4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Feb 27, 2018

Putting y = x n y = x^n we see that 0 ln x 1 + x n d x = 1 n 2 0 y 1 n 1 ln y 1 + y d y = 1 n 2 α B ( α , 1 α ) α = 1 n = 1 n 2 α [ Γ ( α ) Γ ( 1 α ) ] α = 1 n = 1 n 2 α [ π c o s e c π α ] α = 1 n = π 2 n 2 c o s e c π n cot π n \begin{aligned} \int_0^\infty \frac{\ln x}{1 + x^n}\,dx & = \; \frac{1}{n^2} \int_0^\infty \frac{y^{\frac{1}{n}-1}\,\ln y}{1+y}\,dy \; = \; \frac{1}{n^2} \frac{\partial}{\partial \alpha} B(\alpha,1-\alpha) \Big|_{\alpha = \frac{1}{n}} \\ & = \; \frac{1}{n^2} \frac{\partial}{\partial \alpha} \Big[\Gamma(\alpha)\Gamma(1-\alpha)\Big]\Big|_{\alpha = \frac{1}{n}} \; = \; \frac{1}{n^2} \frac{\partial}{\partial \alpha} \big[\pi \mathrm{cosec}\,\pi\alpha\big]\Big|_{\alpha = \frac{1}{n}} \\ & = \; -\tfrac{\pi^2}{n^2} \mathrm{cosec}\tfrac{\pi}{n}\,\cot\tfrac{\pi}{n} \end{aligned} Thus 0 ln x 1 + x 3 2 d x = 8 27 π 2 0 ln x 1 + x 3 d x = 2 27 π 2 \int_0^\infty \frac{\ln x}{1 + x^{\frac32}}\,dx \; = \; \tfrac{8}{27}\pi^2 \hspace{2cm} \int_0^\infty \frac{\ln x}{1 + x^3}\,dx \; = \; -\tfrac{2}{27}\pi^2 making the answer 4 \boxed{-4} .

clever solution

Hassan Abdulla - 2 years, 11 months ago
Hassan Abdulla
Jun 17, 2018

let = g ( n ) = 2 n ( f g ) ( n ) = 0 ln x 1 + x 2 n d x \text{let } =g(n)=2n \\ (f\circ g)(n)=\int_0^\infty{\dfrac{\ln x}{1+x^{2n}} dx} \\

using Complex Integration ln ( z ) 1 + z 2 n d z = Γ R ln ( z ) 1 + z 2 n d z + R r ln ( z ) 1 + z 2 n d z + Γ r ln ( z ) 1 + z 2 n d z + r R ln ( z ) 1 + z 2 n d z as r 0 and R Γ R ln ( z ) 1 + z 2 n d z = 0 and Γ r ln ( z ) 1 + z 2 n d z M L i n e q u a l i t y R r ln ( z ) 1 + z 2 n d z = R r ln ( z ) + i π 1 + z 2 n d z = r R ln ( z ) + i π 1 + z 2 n d z z < 0 ln ( z ) = l n z + i π ln ( z ) 1 + z 2 n d z = 2 0 ln ( x ) 1 + x 2 n d x + i π 0 1 1 + x 2 n d x ( ) \text{using Complex Integration } \\ \oint {\frac{\ln(z)}{1+z^{2n}}dz} =\int _{ \Gamma_R }{\frac{\ln(z)}{1+z^{2n}}dz} +\int _{-R}^{-r}{\frac{\ln(z)}{1+z^{2n}}dz} +\int _{ \Gamma_r }{\frac{\ln(z)}{1+z^{2n}}dz} +\int _{r}^{R}{\frac{\ln(z)}{1+z^{2n}}dz} \\ \begin{matrix} \color{#D61F06}\text{as }r\rightarrow 0 \text{ and } R \rightarrow \infty \Rightarrow \int _{ \Gamma_R }{\frac{\ln(z)}{1+z^{2n}}dz}=0 \text{ and } \int _{ \Gamma_r }{\frac{\ln(z)}{1+z^{2n}}dz} & & ML-inequality \end{matrix} \\ \begin{matrix} \color{#3D99F6} \int _{-R}^{-r}{\frac{\ln(z)}{1+z^{2n}}dz}=\int _{-R}^{-r}{\frac{\ln(-z)+i\pi}{1+z^{2n}}dz}=\int _{r}^{R}{\frac{\ln(z)+i\pi}{1+z^{2n}}dz}& & & z<0\Rightarrow \ln(-z)=ln\left | z \right |+i\pi \end{matrix} \\ \Rightarrow \oint {\frac{\ln(z)}{1+z^{2n}}dz} =2\int _{0}^{\infty}{\frac{\ln(x)}{1+x^{2n}}dx} +i\pi \int _{0}^{\infty}{\frac{1}{1+x^{2n}}dx} \rightarrow (*)

let z = e i θ z 2 n + 1 = 0 e 2 i n θ + 1 = 0 θ = ( 2 k + 1 ) π 2 n for k = 0 , 1 , 2 , , n 1 R e s ( ln ( z ) 1 + z 2 n , z k ) = lim z z k ln ( z ) 1 + z 2 n ( z z k ) = z k ln ( z k ) 2 n z k 2 n = 1 2 n e i ( 2 k + 1 ) π e i ( 2 k + 1 ) π 2 n i ( 2 k + 1 ) π 2 n = i π 4 n 2 ( 2 k + 1 ) e i ( 2 k + 1 ) π 2 n ln ( z ) 1 + z 2 n d z = 2 π i k = 0 n 1 R e s ( ln ( z ) 1 + z 2 n , z k ) = 2 π i k = 0 n 1 i π 4 n 2 ( 2 k + 1 ) e i ( 2 k + 1 ) π 2 n ln ( z ) 1 + z 2 n d z = π 2 2 n 2 k = 0 n 1 ( 2 k + 1 ) ( e π i 2 n ) ( 2 k + 1 ) = π 2 2 n 2 csc ( π 2 n ) cot ( π 2 n ( ) ) see note \color{#69047E} {\text{let z}=e^{i\theta} \\ \Rightarrow z^{2n}+1=0\Leftrightarrow e^{2i n\theta}+1=0\Leftrightarrow \theta=\frac{(2k+1)\pi}{2n} \text{ for }k=0,1,2,\dots ,n-1 \\ Res\left ( \frac{\ln(z)}{1+z^{2n}},z_k \right )=\lim _{ z\rightarrow z_k }{ \frac{\ln(z)}{1+z^{2n}} \cdot (z-z_k) } =\frac{z_k\ln(z_k)}{2n{z_k}^{2n}}=\frac{1}{2ne^{i(2k+1)\pi}} \cdot e^{\frac{i(2k+1)\pi}{2n}}\cdot \frac{i(2k+1)\pi}{2n}=\frac{-i\pi}{4n^2}(2k+1)\cdot e^{\frac{i(2k+1)\pi}{2n}} \\ \oint {\frac{\ln(z)}{1+z^{2n}}dz}=2\pi i \sum_{k=0}^{n-1}{Res\left ( \frac{\ln(z)}{1+z^{2n}},z_k \right )}=2\pi i\sum_{k=0}^{n-1}\frac{-i\pi}{4n^2}(2k+1)\cdot e^{\frac{i(2k+1)\pi}{2n}} \\ \oint {\frac{\ln(z)}{1+z^{2n}}dz}=\frac{\pi^2}{2n^2}\sum_{k=0}^{n-1}{(2k+1)\left ( e^\frac{\pi i}{2n} \right )^{(2k+1)}}=-\frac{\pi^2}{2n^2}\cdot \csc(\frac{\pi}{2n}) \cdot \cot(\frac{\pi}{2n}\rightarrow (**)) \color{#3D99F6} \text{ see note} }

from (*) and (**) 2 0 ln ( x ) 1 + x 2 n d x = π 2 2 n 2 csc ( π 2 n ) cot ( π 2 n ) 0 ln ( x ) 1 + x 2 n d x = π 2 4 n 2 csc ( π 2 n ) cot ( π 2 n ) ( f g ) ( n ) = π 2 4 n 2 csc ( π 2 n ) cot ( π 2 n ) g ( n ) is bijective function g 1 = n 2 f ( n ) = [ ( f g ) g 1 ] ( n ) = π 2 n 2 csc ( π n ) cot ( π n ) now f ( 3 2 ) f ( 3 ) = 4 π 2 9 csc ( 2 π 3 ) cot ( 2 π 3 ) π 2 9 csc ( π 3 ) cot ( π 3 ) = 4 \text{from (*) and (**) } \\ \Rightarrow 2\int _{0}^{\infty}{\frac{\ln(x)}{1+x^{2n}}dx}=-\frac{\pi^2}{2n^2}\cdot \csc(\frac{\pi}{2n}) \cdot \cot(\frac{\pi}{2n}) \\ \Rightarrow \int _{0}^{\infty}{\frac{\ln(x)}{1+x^{2n}}dx}=-\frac{\pi^2}{4n^2}\cdot \csc(\frac{\pi}{2n}) \cdot \cot(\frac{\pi}{2n}) \\ (f\circ g)(n)=-\frac{\pi^2}{4n^2}\cdot \csc(\frac{\pi}{2n}) \cdot \cot(\frac{\pi}{2n}) \\ g(n) \text{is bijective function} \\ g^{-1}=\frac{n}{2} \\ \Rightarrow f(n)=\left [ (f\circ g)\circ g^{-1} \right ](n)=-\frac{\pi^2}{n^2}\cdot \csc(\frac{\pi}{n}) \cdot \cot(\frac{\pi}{n}) \\ \text{now } \frac{f(\frac{3}{2})}{f(3)}=\frac{-\frac{4\pi^2}{9}\cdot \csc(\frac{2\pi}{3}) \cdot \cot(\frac{2\pi}{3})}{-\frac{\pi^2}{9}\cdot \csc(\frac{\pi}{3}) \cdot \cot(\frac{\pi}{3})}=-4

n o t e k = 0 n 1 ( e i θ ) 2 k = k = 0 n 1 ( e 2 i θ ) k = ( e 2 i θ ) n 1 e 2 i θ 1 = 2 e 2 i θ 1 / / geometric progression / / ( e 2 i θ ) n = e i ( 2 k + 1 ) π = 1 k = 0 n 1 ( e i θ ) 2 k + 1 = 2 e i θ e 2 i θ 1 = 2 2 i ( e i θ e i θ 2 i ) = i csc ( θ ) / / e i θ e i θ 2 i = sin ( θ ) k = 0 n 1 i ( 2 k + 1 ) ( e i θ ) 2 k + 1 = i csc ( θ ) cot ( θ ) / / differentiate both sides k = 0 n 1 ( 2 k + 1 ) ( e i θ ) 2 k + 1 = csc ( θ ) cot ( θ ) \color{#3D99F6} { note \\ \begin{aligned} &\sum_{k=0}^{n-1}{\left ( e^{i\theta} \right )^{2k}} & = & \sum_{k=0}^{n-1}{\left ( e^{2i\theta} \right )^{k}} & = & \frac{\left ( e^{2i\theta} \right)^n -1}{e^{2i\theta}-1} & = & \frac{-2}{e^{2i\theta}-1} & // \text{geometric progression} & // \left ( e^{2i\theta} \right)^n=e^{i(2k+1)\pi} =-1 \\ &\sum_{k=0}^{n-1}{\left ( e^{i\theta} \right )^{2k+1}} & = & \frac{-2 \cdot e^{i\theta}}{e^{2i\theta}-1} & = & \frac{-2}{2i\left ( \frac{e^{i\theta} - e^{-i\theta}}{2i} \right )} & = & i \cdot \csc(\theta) & // \frac{e^{i\theta} - e^{-i\theta}}{2i}=\sin(\theta) \\ &\sum_{k=0}^{n-1}{i(2k+1)\left( e^{i\theta} \right )^{2k+1}} & = & i \cdot \csc(\theta) \cdot \cot(\theta) & & & & & // \text{differentiate both sides} \\ &\sum_{k=0}^{n-1}{(2k+1)\left( e^{i\theta} \right )^{2k+1}} & = & \csc(\theta) \cdot \cot(\theta) \end{aligned} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...