∫ 0 ∞ 1 + x n ln x d x Find the closed form of the integral above and hence submit your answer as the value of ∫ 0 ∞ 1 + x 3 ln x d x ∫ 0 ∞ 1 + x x ln x d x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
clever solution
let = g ( n ) = 2 n ( f ∘ g ) ( n ) = ∫ 0 ∞ 1 + x 2 n ln x d x
using Complex Integration ∮ 1 + z 2 n ln ( z ) d z = ∫ Γ R 1 + z 2 n ln ( z ) d z + ∫ − R − r 1 + z 2 n ln ( z ) d z + ∫ Γ r 1 + z 2 n ln ( z ) d z + ∫ r R 1 + z 2 n ln ( z ) d z as r → 0 and R → ∞ ⇒ ∫ Γ R 1 + z 2 n ln ( z ) d z = 0 and ∫ Γ r 1 + z 2 n ln ( z ) d z M L − i n e q u a l i t y ∫ − R − r 1 + z 2 n ln ( z ) d z = ∫ − R − r 1 + z 2 n ln ( − z ) + i π d z = ∫ r R 1 + z 2 n ln ( z ) + i π d z z < 0 ⇒ ln ( − z ) = l n ∣ z ∣ + i π ⇒ ∮ 1 + z 2 n ln ( z ) d z = 2 ∫ 0 ∞ 1 + x 2 n ln ( x ) d x + i π ∫ 0 ∞ 1 + x 2 n 1 d x → ( ∗ )
let z = e i θ ⇒ z 2 n + 1 = 0 ⇔ e 2 i n θ + 1 = 0 ⇔ θ = 2 n ( 2 k + 1 ) π for k = 0 , 1 , 2 , … , n − 1 R e s ( 1 + z 2 n ln ( z ) , z k ) = lim z → z k 1 + z 2 n ln ( z ) ⋅ ( z − z k ) = 2 n z k 2 n z k ln ( z k ) = 2 n e i ( 2 k + 1 ) π 1 ⋅ e 2 n i ( 2 k + 1 ) π ⋅ 2 n i ( 2 k + 1 ) π = 4 n 2 − i π ( 2 k + 1 ) ⋅ e 2 n i ( 2 k + 1 ) π ∮ 1 + z 2 n ln ( z ) d z = 2 π i ∑ k = 0 n − 1 R e s ( 1 + z 2 n ln ( z ) , z k ) = 2 π i ∑ k = 0 n − 1 4 n 2 − i π ( 2 k + 1 ) ⋅ e 2 n i ( 2 k + 1 ) π ∮ 1 + z 2 n ln ( z ) d z = 2 n 2 π 2 ∑ k = 0 n − 1 ( 2 k + 1 ) ( e 2 n π i ) ( 2 k + 1 ) = − 2 n 2 π 2 ⋅ csc ( 2 n π ) ⋅ cot ( 2 n π → ( ∗ ∗ ) ) see note
from (*) and (**) ⇒ 2 ∫ 0 ∞ 1 + x 2 n ln ( x ) d x = − 2 n 2 π 2 ⋅ csc ( 2 n π ) ⋅ cot ( 2 n π ) ⇒ ∫ 0 ∞ 1 + x 2 n ln ( x ) d x = − 4 n 2 π 2 ⋅ csc ( 2 n π ) ⋅ cot ( 2 n π ) ( f ∘ g ) ( n ) = − 4 n 2 π 2 ⋅ csc ( 2 n π ) ⋅ cot ( 2 n π ) g ( n ) is bijective function g − 1 = 2 n ⇒ f ( n ) = [ ( f ∘ g ) ∘ g − 1 ] ( n ) = − n 2 π 2 ⋅ csc ( n π ) ⋅ cot ( n π ) now f ( 3 ) f ( 2 3 ) = − 9 π 2 ⋅ csc ( 3 π ) ⋅ cot ( 3 π ) − 9 4 π 2 ⋅ csc ( 3 2 π ) ⋅ cot ( 3 2 π ) = − 4
n o t e k = 0 ∑ n − 1 ( e i θ ) 2 k k = 0 ∑ n − 1 ( e i θ ) 2 k + 1 k = 0 ∑ n − 1 i ( 2 k + 1 ) ( e i θ ) 2 k + 1 k = 0 ∑ n − 1 ( 2 k + 1 ) ( e i θ ) 2 k + 1 = = = = k = 0 ∑ n − 1 ( e 2 i θ ) k e 2 i θ − 1 − 2 ⋅ e i θ i ⋅ csc ( θ ) ⋅ cot ( θ ) csc ( θ ) ⋅ cot ( θ ) = = e 2 i θ − 1 ( e 2 i θ ) n − 1 2 i ( 2 i e i θ − e − i θ ) − 2 = = e 2 i θ − 1 − 2 i ⋅ csc ( θ ) / / geometric progression / / 2 i e i θ − e − i θ = sin ( θ ) / / differentiate both sides / / ( e 2 i θ ) n = e i ( 2 k + 1 ) π = − 1
Problem Loading...
Note Loading...
Set Loading...
Putting y = x n we see that ∫ 0 ∞ 1 + x n ln x d x = n 2 1 ∫ 0 ∞ 1 + y y n 1 − 1 ln y d y = n 2 1 ∂ α ∂ B ( α , 1 − α ) ∣ ∣ ∣ α = n 1 = n 2 1 ∂ α ∂ [ Γ ( α ) Γ ( 1 − α ) ] ∣ ∣ ∣ α = n 1 = n 2 1 ∂ α ∂ [ π c o s e c π α ] ∣ ∣ ∣ α = n 1 = − n 2 π 2 c o s e c n π cot n π Thus ∫ 0 ∞ 1 + x 2 3 ln x d x = 2 7 8 π 2 ∫ 0 ∞ 1 + x 3 ln x d x = − 2 7 2 π 2 making the answer − 4 .