0 2 ( ) × 0 2 ( ) \int^2_0 (~~~) \times \int^2_0 (~~~)

Calculus Level 3

0 2 x + 6 3 x + 6 d x × 0 2 x + 8 3 x + 8 d x = ? \large \int^2_0 \frac{\sqrt[3]{x+6}}{\sqrt{x+6}} dx \times \int^2_0 \frac{\sqrt[3]{x+8}}{\sqrt{x+8}} dx = ?

Give your answer to 2 decimal places.


The answer is 2.01.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Nov 30, 2017

Note first that a 3 a = a 1 / 3 / a 1 / 2 = a 1 3 1 2 = a 1 / 6 . \frac{\sqrt[3]a}{\sqrt a} = a^{1/3}/a^{1/2} = a^{\tfrac13 - \tfrac12} = a^{-1/6}. Next, 0 2 x + b 3 x + b d x = 0 2 ( x + b ) 1 / 6 d x = 1 5 / 6 ( x + b ) 5 / 6 0 2 = 6 5 ( ( b + 2 ) 5 / 6 b 5 / 6 ) . \int_0^2 \frac{\sqrt[3]{x+b}}{\sqrt{x+b}}\:dx = \int_0^2 (x+b)^{-1/6}\:dx = \left.\frac 1{5/6}(x+b)^{5/6}\right|_0^2 = \frac 6 5\left((b+2)^{5/6} - b^{5/6}\right). Finally, the given product of integrals evaluates to ( 6 5 ( 8 5 / 6 6 5 / 6 ) ) ( 6 5 ( 1 0 5 / 6 8 5 / 6 ) ) = 36 25 ( 8 5 / 6 6 5 / 6 ) ( 1 0 5 / 6 8 5 / 6 ) 2.0074 2.01 . \left(\frac 65\left(8^{5/6}-6^{5/6}\right)\right)\left(\frac 65\left(10^{5/6}-8^{5/6}\right)\right) = \frac{36}{25} \left(8^{5/6}-6^{5/6}\right)\left(10^{5/6}-8^{5/6}\right) \approx 2.0074 \approx \boxed{2.01}.

Chew-Seong Cheong
Nov 30, 2017

P = 0 2 x + 6 3 x + 6 d x × 0 2 x + 8 3 x + 8 d x = 0 2 ( x + 6 ) 1 3 ( x + 6 ) 1 2 d x × 0 2 ( x + 8 ) 1 3 ( x + 8 ) 1 2 d x = 0 2 ( x + 6 ) 1 6 d x × 0 2 ( x + 8 ) 1 6 d x = 6 5 [ ( x + 6 ) 5 6 ] 0 2 × 6 5 [ ( x + 8 ) 5 6 ] 0 2 = 6 5 [ 8 5 6 6 5 6 ] × 6 5 [ 1 0 5 6 8 5 6 ] 2.01 \begin{aligned} P & = \int_0^2 \frac {\sqrt[3]{x+6}}{\sqrt{x+6}} dx \times \int_0^2 \frac {\sqrt[3]{x+8}}{\sqrt{x+8}} dx \\ & = \int_0^2 \frac {(x+6)^\frac 13}{(x+6)^\frac 12} dx \times \int_0^2 \frac {(x+8)^\frac 13}{(x+8)^\frac 12} dx \\ & = \int_0^2 (x+6)^{-\frac 16} dx \times \int_0^2 (x+8)^{-\frac 16} dx \\ & = \frac 65 \left[(x+6)^\frac 56 \right]_0^2 \times \frac 65 \left[(x+8)^\frac 56 \right]_0^2 \\ & = \frac 65 \left[8^\frac 56 - 6^\frac 56 \right] \times \frac 65 \left[10^\frac 56 - 8^\frac 56 \right] \\ & \approx \boxed{2.01} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...