0 sin ( x ) e x 1 d x \small \int_0^\infty \frac{\sin(x)}{e^x-1} dx

Calculus Level 5

0 sin ( x ) e x 1 d x = π a b + π e c π 1 \int_0^\infty \dfrac{\sin(x)}{e^x-1} dx = \frac{\pi-a}{b}+\frac{\pi}{e^{c\pi}-1}

The equation above holds true for positive integers a a , b b , and c c . What is a + b + c a+b+c ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Joseph Newton
Jun 13, 2019

To solve the integral, we use the series representation of 1 1 x \frac1{1-x} , 1 1 x = 1 + x + x 2 + x 3 + \frac1{1-x}=1+x+x^2+x^3+\dots We can't directly substitute e x e^x in, because the series diverges for x > 1 x>1 . Instead, we can rearrange and use e x e^{-x} , which is between 0 and 1 for all positive x x . 0 sin x e x 1 d x = 0 e x sin x 1 e x d x = 0 e x sin x n = 0 ( e x ) n d x = 0 n = 0 e x n x sin x d x = 0 n = 1 e x n sin x d x \begin{aligned} \int_0^\infty \frac{\sin x}{e^x-1} dx &=\int_0^\infty \frac{e^{-x}\sin x}{1-e^{-x}} dx\\ &=\int_0^\infty e^{-x}\sin x \sum_{n=0}^\infty \left(e^{-x}\right)^n dx\\ &=\int_0^\infty \sum_{n=0}^\infty e^{-xn-x}\sin x\ dx\\ &=\int_0^\infty \sum_{n=1}^\infty e^{-xn}\sin x\ dx \end{aligned} Now, consider the integral of a single element of this sum, which we can solve with integration by parts: I = 0 e x n sin x d x = [ e x n cos x ] 0 n 0 e x n cos x d x = 1 n ( [ e x n sin x ] 0 + n 0 e x n sin x d x ) = 1 n ( 0 + n I ) = 1 n 2 I I ( 1 + n 2 ) = 1 I = 1 1 + n 2 \begin{aligned} I &=\int_0^\infty e^{-xn}\sin x\ dx\\ &=\left[-e^{-xn}\cos x\right]_0^\infty-n\int_0^\infty e^{-xn}\cos x\ dx\\ &=1-n\left(\left[e^{-xn}\sin x\right]_0^\infty+n\int_0^\infty e^{-xn}\sin x\ dx\right)\\ &=1-n\left(0+nI\right)\\ &=1-n^2I\\ \implies I(1+n^2)&=1\\ \implies I&=\frac1{1+n^2}\end{aligned} Now, since the integral exists for any n 1 n\geq1 , we can swap the integral and summation: 0 sin x e x 1 d x = 0 n = 1 e x n sin x d x = n = 1 0 e x n sin x d x = n = 1 1 1 + n 2 \begin{aligned} \int_0^\infty \frac{\sin x}{e^x-1} dx &=\int_0^\infty \sum_{n=1}^\infty e^{-xn}\sin x\ dx\\ &=\sum_{n=1}^\infty \int_0^\infty e^{-xn}\sin x\ dx\\ &=\sum_{n=1}^\infty \frac1{1+n^2}\end{aligned} We can solve this using the digamma function ψ ( x ) \psi(x) , which has the following property: ψ ( z + 1 ) = γ + k = 1 ( 1 k 1 k + z ) ψ ( 1 + z ) ψ ( 1 z ) = γ + k = 1 ( 1 k 1 k + z ) + γ + k = 1 ( 1 k + 1 k z ) = k = 1 ( 1 k z 1 k + z ) \begin{aligned}\psi(z+1) &= -\gamma+\sum_{k=1}^\infty \left(\frac1k-\frac1{k+z}\right)\\ \implies\psi(1+z)-\psi(1-z) &= -\gamma+\sum_{k=1}^\infty \left(\frac1k-\frac1{k+z}\right)+\gamma+\sum_{k=1}^\infty \left(-\frac1k+\frac1{k-z}\right)\\ &= \sum_{k=1}^\infty \left(\frac1{k-z}-\frac1{k+z}\right)\end{aligned} Now, we can use complex numbers to write the sum in this form: n = 1 1 1 + n 2 = n = 1 1 ( n + i ) ( n i ) = n = 1 1 2 i ( 1 n i 1 n + i ) = i 2 ( ψ ( 1 + i ) ψ ( 1 i ) ) \begin{aligned}\sum_{n=1}^\infty \frac1{1+n^2} &=\sum_{n=1}^\infty \frac1{(n+i)(n-i)}\\ &=\sum_{n=1}^\infty \frac1{2i}\left(\frac1{n-i}-\frac1{n+i}\right)\\ &=-\frac i2\left(\psi(1+i)-\psi(1-i)\right)\end{aligned} ψ ( 1 + i ) \psi(1+i) can be simplified using the digamma recurrence formula, ψ ( x + 1 ) = ψ ( x ) + 1 x \psi(x+1)=\psi(x)+\frac1x .

ψ ( 1 i ) \psi(1-i) can be simplified using the digamma reflection formula, ψ ( 1 x ) = ψ ( x ) + π cot π x \psi(1-x)=\psi(x)+\pi\cot\pi x . Hence, we have n = 1 = i 2 ( ψ ( 1 + i ) ψ ( 1 i ) ) = i 2 ( ψ ( i ) + 1 i ψ ( i ) π cot π i ) = i 2 ( 1 i π cot π i ) = 1 2 + π 2 cot π i \begin{aligned}\sum_{n=1}^\infty &=-\frac i2\left(\psi(1+i)-\psi(1-i)\right)\\ &=-\frac i2\left(\psi(i)+\frac1i-\psi(i)-\pi\cot\pi i\right)\\ &=-\frac i2\left(\frac1i-\pi\cot\pi i\right)\\ &=-\frac12+\frac{\pi}2\cot\pi i\end{aligned} We now use the complex cotangent formula (which can be derived from Euler's formula e i x = cos x + i sin x e^{ix}=\cos x+i\sin x ): 1 2 + π i 2 cot π i = 1 2 + π i 2 i ( e i ( π i ) + e i ( π i ) e i ( π i ) e i ( π i ) ) = 1 2 π 2 ( e π + e π e π e π ) = 1 2 π 2 ( 1 + e 2 π 1 e 2 π ) = 1 2 π 2 ( 2 1 e 2 π 1 ) = 1 2 + π 2 π 1 e 2 π = π 1 2 + π e 2 π 1 \begin{aligned}-\frac12+\frac{\pi i}2\cot\pi i &=-\frac12+\frac{\pi i}2 i\left(\frac{e^{i(\pi i)}+e^{-i(\pi i)}}{e^{i(\pi i)}-e^{-i(\pi i)}}\right)\\ &=-\frac12-\frac{\pi}2\left(\frac{e^{-\pi}+e^{\pi}}{e^{-\pi}-e^{\pi}}\right)\\ &=-\frac12-\frac{\pi}2\left(\frac{1+e^{2\pi}}{1-e^{2\pi}}\right)\\ &=-\frac12-\frac{\pi}2\left(\frac2{1-e^{2\pi}}-1\right)\\ &=-\frac12+\frac{\pi}2-\frac{\pi}{1-e^{2\pi}}\\ &=\frac{\pi-1}2+\frac{\pi}{e^{2\pi}-1}\end{aligned} So 0 sin x e x 1 d x = π 1 2 + π e 2 π 1 \displaystyle\int_0^\infty \frac{\sin x}{e^x-1}dx=\frac{\pi-1}2+\frac{\pi}{e^{2\pi}-1} , and hence a = 1 , b = 2 , c = 2 a=1,b=2,c=2 and so the answer is 5 \boxed{5}

jesus... well done

Vin Benzin - 1 year, 12 months ago

Also we can solve the summation woyh fourier series of e^x

RdA . - 1 year, 11 months ago
Kyle T
Jun 13, 2019

Someone can probably write a better solution but heres how I got it.

So starting over at wolfram
I found that the integral evaluates to 1.07667

I then had to write a quick brute force to check positive integer values for a, b and c until we got a combo that matched.
I had to "match" the beginning of the string to account for decimals and rounding errors and whatnot.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
<?php
for($a=1;$a<10;$a++){
    for($b=1;$b<10;$b++){
        for($c=1;$c<10;$c++){
            $v = ((M_PI-$a)/$b)+(M_PI/(pow(M_E,$c*M_PI)-1));
            if(stristr($v,'1.07667')){
                echo 'f(abc)='.$v.' '.$a.'+'.$b.'+'.$c.'='.($a+$b+$c);exit;
            }
        }
    }
}
// prints: f(abc)=1.0766740474686 1+2+2=5
?>

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...