∫ 0 ∞ e x − 1 sin ( x ) d x = b π − a + e c π − 1 π
The equation above holds true for positive integers a , b , and c . What is a + b + c ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
jesus... well done
Also we can solve the summation woyh fourier series of e^x
Someone can probably write a better solution but heres how I got it.
So starting over at
wolfram
I found that the integral evaluates to 1.07667
I then had to write a quick brute force to check positive integer values for a, b and c until we got a combo that matched.
I had to "match" the beginning of the string to account for decimals and rounding errors and whatnot.
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
Problem Loading...
Note Loading...
Set Loading...
To solve the integral, we use the series representation of 1 − x 1 , 1 − x 1 = 1 + x + x 2 + x 3 + … We can't directly substitute e x in, because the series diverges for x > 1 . Instead, we can rearrange and use e − x , which is between 0 and 1 for all positive x . ∫ 0 ∞ e x − 1 sin x d x = ∫ 0 ∞ 1 − e − x e − x sin x d x = ∫ 0 ∞ e − x sin x n = 0 ∑ ∞ ( e − x ) n d x = ∫ 0 ∞ n = 0 ∑ ∞ e − x n − x sin x d x = ∫ 0 ∞ n = 1 ∑ ∞ e − x n sin x d x Now, consider the integral of a single element of this sum, which we can solve with integration by parts: I ⟹ I ( 1 + n 2 ) ⟹ I = ∫ 0 ∞ e − x n sin x d x = [ − e − x n cos x ] 0 ∞ − n ∫ 0 ∞ e − x n cos x d x = 1 − n ( [ e − x n sin x ] 0 ∞ + n ∫ 0 ∞ e − x n sin x d x ) = 1 − n ( 0 + n I ) = 1 − n 2 I = 1 = 1 + n 2 1 Now, since the integral exists for any n ≥ 1 , we can swap the integral and summation: ∫ 0 ∞ e x − 1 sin x d x = ∫ 0 ∞ n = 1 ∑ ∞ e − x n sin x d x = n = 1 ∑ ∞ ∫ 0 ∞ e − x n sin x d x = n = 1 ∑ ∞ 1 + n 2 1 We can solve this using the digamma function ψ ( x ) , which has the following property: ψ ( z + 1 ) ⟹ ψ ( 1 + z ) − ψ ( 1 − z ) = − γ + k = 1 ∑ ∞ ( k 1 − k + z 1 ) = − γ + k = 1 ∑ ∞ ( k 1 − k + z 1 ) + γ + k = 1 ∑ ∞ ( − k 1 + k − z 1 ) = k = 1 ∑ ∞ ( k − z 1 − k + z 1 ) Now, we can use complex numbers to write the sum in this form: n = 1 ∑ ∞ 1 + n 2 1 = n = 1 ∑ ∞ ( n + i ) ( n − i ) 1 = n = 1 ∑ ∞ 2 i 1 ( n − i 1 − n + i 1 ) = − 2 i ( ψ ( 1 + i ) − ψ ( 1 − i ) ) ψ ( 1 + i ) can be simplified using the digamma recurrence formula, ψ ( x + 1 ) = ψ ( x ) + x 1 .
ψ ( 1 − i ) can be simplified using the digamma reflection formula, ψ ( 1 − x ) = ψ ( x ) + π cot π x . Hence, we have n = 1 ∑ ∞ = − 2 i ( ψ ( 1 + i ) − ψ ( 1 − i ) ) = − 2 i ( ψ ( i ) + i 1 − ψ ( i ) − π cot π i ) = − 2 i ( i 1 − π cot π i ) = − 2 1 + 2 π cot π i We now use the complex cotangent formula (which can be derived from Euler's formula e i x = cos x + i sin x ): − 2 1 + 2 π i cot π i = − 2 1 + 2 π i i ( e i ( π i ) − e − i ( π i ) e i ( π i ) + e − i ( π i ) ) = − 2 1 − 2 π ( e − π − e π e − π + e π ) = − 2 1 − 2 π ( 1 − e 2 π 1 + e 2 π ) = − 2 1 − 2 π ( 1 − e 2 π 2 − 1 ) = − 2 1 + 2 π − 1 − e 2 π π = 2 π − 1 + e 2 π − 1 π So ∫ 0 ∞ e x − 1 sin x d x = 2 π − 1 + e 2 π − 1 π , and hence a = 1 , b = 2 , c = 2 and so the answer is 5