Inte-great! returns

Calculus Level 2

1 e π / 4 tan ( ln x ) x d x = A B ln C \large \int _{ 1 }^{ {e}^{\pi /4} }{ \cfrac { \tan ( \ln { x } ) }{ x } } \, dx = \, \dfrac{A}{B} \, \ln C

Given A A , B B and C C are positive integers satisfying the equation above, with A A and B B coprime and C C minimised, find A + B + C A+B+C .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Jul 7, 2016

I = 1 e π 4 tan ( ln ( x ) ) x d x \displaystyle I=\int _{ 1 }^{ { e }^{ \frac { \pi }{ 4 } } }{ \frac { \tan { \left( \ln { \left( x \right) } \right) } }{ x } dx }

Substitute: ln ( x ) = t \ln(x)=t . On differentiating both the sides w.r.t. t t , we have 1 x d x = d t \frac{1}{x}dx=dt .

I = 0 π 4 tan ( t ) d t \displaystyle I=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \tan { \left( t \right) } dt } .

We use the result of the indefinite integral: ln ( sec ( t ) ) + C \displaystyle \ln { \left( \sec { \left( t \right) } \right) } +C

I = { ln ( sec ( t ) ) } 0 π 4 I={ \left\{ \ln { \left( \sec { \left( t \right) } \right) } \right\} }_{ 0 }^{ \frac { \pi }{ 4 } }

Therefore, I = 1 2 ln ( 2 ) \boxed{I=\frac { 1 }{ 2 } \ln { \left( 2 \right) } } .

Isn't the antiderivative of tanx = -ln(cosx) also?

J D - 4 years, 11 months ago

Log in to reply

-ln(cosx)=ln(secx). Use the property of lnx=-ln(1/x)

Aditya Kumar - 4 years, 11 months ago

I think you'd get a different answer that way

J D - 4 years, 11 months ago

Log in to reply

You may have to read logarithms .

Aditya Kumar - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...