Given , and are positive integers satisfying the equation above, with and coprime and minimised, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 1 e 4 π x tan ( ln ( x ) ) d x
Substitute: ln ( x ) = t . On differentiating both the sides w.r.t. t , we have x 1 d x = d t .
I = ∫ 0 4 π tan ( t ) d t .
We use the result of the indefinite integral: ln ( sec ( t ) ) + C
I = { ln ( sec ( t ) ) } 0 4 π
Therefore, I = 2 1 ln ( 2 ) .