Inte-great!

Calculus Level 2

1 e ln x x d x = ? \Large \int _{ 1 }^{ e }{ \cfrac { \ln { x } }{ x } } \, dx = \, ?

Bonus: Find the value of the integral in two different ways.


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sam Bealing
May 8, 2016

u = ln ( x ) d u d x = 1 / x x d u = d x u=\ln(x) \Rightarrow \dfrac{du}{dx}=1/x \Rightarrow x \cdot du=dx

1 e ln ( x ) x d x = 0 1 u d u = [ u 2 2 ] 0 1 = 0.5 \int_{1}^{e} \dfrac{\ln(x)}{x} dx=\int_{0}^{1} u \cdot du=\left [\dfrac{u^2}{2} \right]_{0}^{1}=\boxed{0.5}

Moderator note:

Simple standard approach.

Did the same. Easiest method for this ;)

Nihar Mahajan - 5 years, 1 month ago

Yup. Did in the same manner. !!!Substitution. By the way nice and clear sol.+1

Rishabh Tiwari - 5 years, 1 month ago
Michael Fuller
May 8, 2016

Using integration by parts with u = ln x u=\ln x and v = x 1 v'=x^{-1} :

1 e ln x x d x = [ ln 2 x ] 1 e 1 e ln x x d x \int_{1}^{e} \dfrac{\ln x}{x} \, dx= [\ln ^2 x]_{1}^{e} - \int_{1}^{e} \dfrac{\ln x}{x} \, dx

2 1 e ln x x d x = 1 \Rightarrow 2 \int_{1}^{e} \dfrac{\ln x}{x} \, dx= 1

1 e ln x x d x = 0.5 \Rightarrow \int_{1}^{e} \dfrac{\ln x}{x} \, dx= \large \color{#20A900}{\boxed{0.5}}

Parts is nice too. +1

Rishabh Tiwari - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...