Integer and common expression

Algebra Level 3

P = ( a + b + c ) ( 1 a + 1 b + 1 c ) \large P=\left\lfloor\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right\rfloor

Find the value of P P as defined above, where a a , b b and c c are real numbers such that 1 < a , b , c < 2 1<a,b,c<2 .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let A = ( a + b + c ) ( 1 a + 1 b + 1 c ) A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) . We can simplify it to A = 3 + a b + b a + b c + c b + c a + a c A=3+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c} .

Applying the Cauchy inequality multiple times for a , b , c > 0 a, b, c > 0 : a b + b a 2 a b × b a = 2 \frac{a}{b}+\frac{b}{a}\ge 2\sqrt{\frac{a}{b}\times \frac{b}{a}}=2 , so b c + c b 2 \frac{b}{c}+\frac{c}{b}\ge 2 and c a + a c 2 \frac{c}{a}+\frac{a}{c}\ge 2 .

Because A = 3 + a b + b a + b c + c b + c a + a c A=3+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c} , the smallest value of A A is 3 + 2 + 2 + 2 = 9 3+2+2+2=9 , or A 9 A\ge 9 .

Next, as we have to find the integer part of A A and we have A 9 A\ge 9 , we will have to prove that A < 10 A<10 too.

Assume that 1 < a b c < 2 1<a\le b\le c<2 (all other cases of the order of a , b , c a, b, c have similar proofs), in this case, a b 0 a-b\le 0 and b c 0 b-c\le 0 . This leads to ( a b ) ( b c ) 0 \left(a-b\right)\left(b-c\right)\ge 0 , or a b a c b 2 + b c 0 ab-ac-b^2+bc\ge 0 , implying that a b + b c b 2 + a c ab+bc\ge b^2+ac .

Divide the inequality above by a b ab and b c bc , we have this set of two inequalities: { 1 + c a b a + c b 1 + a c b c + a b {\begin{cases}1+\frac{c}{a}\ge \frac{b}{a}+\frac{c}{b}\\1+\frac{a}{c}\ge \frac{b}{c}+\frac{a}{b}\end{cases}}

Add both inequalities together, we will have a b + b a + b c + c b a c + c a + 2 \frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\le \frac{a}{c}+\frac{c}{a}+2 .

Because A = 3 + a b + b a + b c + c b + c a + a c A=3+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c} , A 3 + a c + c a + 2 + a c + c a A\le 3+\frac{a}{c}+\frac{c}{a}+2+\frac{a}{c}+\frac{c}{a} or A 5 + 2 ( a c + c a ) A\le 5+2\left(\frac{a}{c}+\frac{c}{a}\right) .

At this point, we must remember that 1 < a b c < 2 1<a\le b\le c<2 , because a , b , c > 0 a,b,c>0 we have: c a c \ge a so c a > 1 > 1 2 \frac{c}{a}>1>\frac{1}{2} , we also have c a < 2 a < 2 \frac{c}{a}<\frac{2}{a}<2 because c < 2 c<2 and a > 1 a>1 . This implies that c a 1 2 > 0 \frac{c}{a}-\frac{1}{2}>0 and c a 2 < 0 \frac{c}{a}-2<0 , which leads to ( c a 1 2 ) ( c a 2 ) < 0 \left(\frac{c}{a}-\frac{1}{2}\right)\left(\frac{c}{a}-2\right)<0 or ( c a ) 2 5 2 × c a + 1 < 0 \left(\frac{c}{a}\right)^2-\frac{5}{2}\times \frac{c}{a}+1<0 .

Divide the entire inequality above by c a \frac{c}{a} (we are able to do this because a , b , c 0 a,b,c\ne 0 ), we will have c a 5 2 + a c < 0 \frac{c}{a}-\frac{5}{2}+\frac{a}{c}<0 or c a + a c < 5 2 \frac{c}{a}+\frac{a}{c}<\frac{5}{2} . Because A 5 + 2 ( a c + c a ) A\le 5+2\left(\frac{a}{c}+\frac{c}{a}\right) as proven above, A < 5 + 2 × 5 2 A<5+2\times \frac{5}{2} or A < 10 A<10 .

Combine with A 9 A\ge 9 , we will have 9 A < 10 9\le A<10 .

So P = [ A ] = 9 P=\left[A\right]=9 .

Good solution!

Steven Jim - 3 years, 5 months ago

I didn't try to prove every case, but this is awesome.

Pepper Mint - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...