How To Compare Transcendentals?

Calculus Level 2

3 π e , π 3 e , e 3 π \large 3^{\pi e} , \pi^{3 e} , e^{3 \pi}

Compare the above terms.

π 3 e < e 3 π < 3 π e \pi^{3e} < e^{3 \pi} < 3^{\pi e} 3 π e < π 3 e < e 3 π 3^{\pi e} < \pi^{3 e} < e^{3 \pi} e 3 π < 3 π e < π 3 e e^{3 \pi} < 3^{\pi e} < \pi^{3e} 3 π e < e 3 π < π 3 e 3^{\pi e} < e^{3 \pi} < \pi^{3e} π 3 e < 3 π e < e 3 π \pi^{3e} < 3^{\pi e} < e^{3 \pi} e 3 π < π 3 e < 3 π e e^{3 \pi} < \pi^{3e} < 3^{\pi e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Archit Agrawal
Sep 17, 2016

Use the graph of x^(1/x). You will see e^(1/e)>3^(1/3)>π^(1/π) then raise their power by 3eπ to get e^3π>3^eπ>π^3e.


Further elaboration :

We start with the the graph y = x 1 / x y = x^{1/x} . I will prove that y y is a decreasing function for x > e x>e via derivatives.

We start by applying the logarithmic differentiation, ln y = ln x x \ln y = \dfrac{\ln x}x . We differentiate the previous equation with respect to x x ,

1 y d y d x = 1 ln x x 2 . \dfrac 1y \cdot \dfrac{dy}{dx} = \dfrac{1 - \ln x}{x^2} \; .

Since y > 0 y> 0 for all x > e x>e and 1 ln x < 0 1 - \ln x < 0 for x > e x > e , then

Since for all x > e x>e , we know that y > 0 y>0 and 1 ln x < 0 1-\ln x< 0 , then R H S < 0 RHS< 0 and so d y d x < 0 \dfrac{dy}{dx} < 0 . Hence, f ( x ) : = y = x 1 / x f(x) := y = x^{1/x} is a decreasing function for x > e x>e .

Because e < 3 < π e < 3 < \pi , then f ( e ) > f ( 3 ) > f ( π ) f(e) > f(3) > f(\pi) . And so

e 1 / e > 3 1 / 3 > π 1 / π , e^{1/e} > 3^{1/3} > \pi^{1/\pi} ,

we raise the entire inequality by 3 e π 3e\pi to obtain the desired answer e 3 π > 3 π e > π 3 e \large \boxed{ e^{3\pi} > 3^{\pi e} > \pi^{3e }} .

WOAAAAAAAAAAAHHHHHH!

Pi Han Goh - 4 years, 9 months ago

That's a very neat solution!

Sharky Kesa - 4 years, 9 months ago

Standard textbook problem!

Ayush Agarwal - 4 years, 9 months ago

👍 hats off clean and neat .

Pawan pal - 4 years, 8 months ago
Sharky Kesa
Sep 17, 2016

Note that e + π 2 3 \frac{e+\pi}{2} \approx 3 . Thus, we substitute π = 3 + δ \pi=3+\delta and e = 3 δ e=3-\delta . We have

3 π e 3 ( 3 δ ) ( 3 + δ ) = 3 9 δ 2 \begin{aligned} 3^{\pi e} &\approx 3^{(3-\delta)(3+\delta)}\\ &= 3^{9-\delta^2} \end{aligned}

Since δ < 1 \delta < 1 and is close to 0 0 , we can substitute δ 2 0 \delta^2 \approx 0 , so 3 π e 3 9 = 19683 3^{\pi e} \approx 3^9 = 19683 . For e 3 π e^{3\pi} , we have

e 3 π = ( 3 δ ) 3 ( 3 + δ ) = 3 9 + 3 δ ( 1 δ 3 ) 9 + 3 δ \begin{aligned} e^{3\pi} &= (3-\delta)^{3(3+\delta)}\\ &=3^{9+3\delta} (1-\frac{\delta}{3})^{9+3\delta} \end{aligned}

We expand to the zeroth order via Taylor's (because δ \delta is reasonably small so that's ok)

e 3 π 3 9 + 3 δ > 3 9 > 3 π e e^{3\pi} \approx 3^{9+3\delta} > 3^9 > 3^{\pi e}

Doing the same thing with π 3 e \pi^{3e} , we get:

π 3 e = ( 3 + δ ) 3 ( 3 δ ) = 3 9 3 δ ( 1 + δ 3 ) 9 3 δ 3 9 3 δ π^{3e} = (3+\delta)^{3(3-\delta)} = 3^{9-3\delta} (1 + \frac{\delta}{3})^{9-3\delta} \approx 3^{9-3\delta}

So we have:

π 3 e 3 9 3 δ 3 π e 3 9 e 3 π 3 9 + 3 δ \begin{aligned} \pi^{3e} &\approx 3^{9-3\delta}\\ 3^{\pi e} &\approx 3^9\\ e^{3\pi} &\approx 3^{9+3\delta} \end{aligned}

so:

π 3 e < 3 π e < e 3 π \pi^{3e} < 3^{\pi e} < e^{3\pi}


Author's note: Of course this is just a fluke solution, as their differences are still fairly big and distinct. The error value for 3 π e 3^{\pi e} is about 65%, so it is massive, but this functions for the question without using a calculator.

Challenge Master Note : The title suggests that these 3 numbers are transcendental. Is it true? Can you prove it?

Pi Han Goh - 4 years, 9 months ago

Log in to reply

I know that e 3 π e^{3\pi} is indeed transcendental because it is the cube of Gelfond's constant. The others are way too weird for me to consider!

Sharky Kesa - 4 years, 8 months ago

Log in to reply

@Sharky Kesa Nice solution. BTW isn't it Gelfond:)

rajdeep das - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...