The Floor

Algebra Level 2

Let x R x \in \!\,\mathbb{R^*} , calculate 1 x 2 + 1 \left \lfloor \dfrac{1}{x^{2}+1} \right \rfloor .

Notations :

0 1 4 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Jul 14, 2016

We know that : x x 1 x 2 + 1 1 x 2 + 1 The equation 1 x 2 + 1 , can never be ’0’. That gives us an inequality 0 < 1 x 2 + 1 0 = 1 x 2 + 1 0 = 1 x 2 + 1 \text{We know that : }\\ \lfloor x \rfloor \leq x \\ \implies \lfloor \dfrac{1}{x^2+1} \rfloor \leq \dfrac{1}{x^2 + 1} \\ \text{The equation } \dfrac{1}{x^2+1} \text{, can never be '0'. That gives us an inequality} \\ 0 < \dfrac{1}{x^2 + 1} \\ \implies \lfloor 0 \rfloor = \lfloor \dfrac{1}{x^2 + 1} \rfloor \implies 0 = \lfloor \dfrac{1}{x^2 + 1} \rfloor

Fidel Simanjuntak
Jul 13, 2016

You can choose any number of x x , then subtitute into the equation. I choose x = 1 x=1 , then we get 1 2 \left \lfloor \frac{1}{2} \right \rfloor . Note that every value of x x will leave a fraction with " 1 " "1" is the numerator and x 2 + 1 > 1 x^{2}+1 > 1 . That gives us 0 < 1 x 2 + 1 < 1 0< \frac{1}{x^2+1} <1 . So, the value of 1 x 2 + 1 = 0 \left \lfloor \frac{1}{x^{2}+1} \right \rfloor= 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...