Integer points on an ellipsoid

15 x 2 135 x + 21 y 2 147 y + 70 z 2 140 z = 314 15x^2-135x+21y^2-147y+70z^2-140z=314

Consider a point ( a , b , c ) (a,b,c) on the ellipsoid whose equation is given above. If a , a, b , b, and c c are integers, what is the maximum value of a + b + c ? a+b+c\ ?


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Andy Hayes
Sep 29, 2017

Take the equation mod 7:

x 2 2 x 6 ( m o d 7 ) x 1 ( m o d 7 ) \begin{aligned} x^2-2x &\equiv 6 \pmod{7} \\ x &\equiv 1 \pmod{7} \end{aligned}

Take the equation mod 5:

y 2 2 y 4 ( m o d 5 ) y 1 ( m o d 5 ) \begin{aligned} y^2-2y &\equiv 4 \pmod{5} \\ y &\equiv 1 \pmod{5} \end{aligned}

Take the equation mod 3:

z 2 2 z 2 ( m o d 3 ) z 1 ( m o d 3 ) \begin{aligned} z^2-2z &\equiv 2 \pmod{3} \\ z &\equiv 1 \pmod{3} \end{aligned}

If there exist integer points on the ellipsoid, the coordinates must satisfy these congruences. Now convert the equation to standard form:

( x 4.5 ) 2 63 + ( y 3.5 ) 2 45 + ( z 1 ) 2 13.5 = 1 \frac{(x-4.5)^2}{63}+\frac{(y-3.5)^2}{45}+\frac{(z-1)^2}{13.5}=1

This gives the minimum and maximum values of the variables:

x [ 4.5 63 , 4.5 + 63 ] y [ 3.5 45 , 3.5 + 45 ] z [ 1 13.5 , 1 + 13.5 ] \begin{aligned} x &\in [4.5-\sqrt{63},4.5+\sqrt{63}] \\ y &\in [3.5-\sqrt{45},3.5+\sqrt{45}] \\ z &\in [1-\sqrt{13.5},1+\sqrt{13.5}] \\ \end{aligned}

The maximum integer coordinates that satisfy the congruences and intervals above are ( 8 , 6 , 4 ) . (8,6,4). Plugging this in confirms that this point is on the ellipsoid. Therefore, the maximum value of a + b + c a+b+c is 8 + 6 + 4 = 18 . 8+6+4=\boxed{18}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...