How many integer solutions does the following equation have?
x 2 − 4 x y + 6 y 2 − 2 x − 2 0 y = 2 9
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x 2 − 4 x y + 6 y 2 − 2 x − 2 0 y = 2 9
x 2 − 4 x y + 4 y 2 + 2 y 2 − 2 x − 2 4 y + 4 y = 2 9
( x − 2 y ) 2 − 2 x + 4 y + 2 y 2 − 2 4 y = 2 9
( x − 2 y ) 2 − 2 ( x − 2 y ) + 1 + 2 y 2 − 2 4 y + 7 2 = 2 9 + 1 + 7 2
( ( x − 2 y ) − 1 ) 2 + 2 ( y 2 − 1 2 y + 3 6 ) = 1 0 2
( x − 2 y − 1 ) 2 + 2 ( y − 6 ) 2 = 1 0 2
It's possible to notice that ( x − 2 y − 1 ) 2 and 2 ( y − 6 ) 2 are always going to be a positive number, and since the latter is always going to be pair, x − 2 y − 1 also has to be pair, and it can't be bigger than 10, else ( x − 2 y − 1 ) 2 will be higher than 102, so the possible values of x − 2 y − 1 is 0, 2, 4, 6, 8, 10, -2, -4, -6, -8 and -10. If x − 2 y − 1 is 0, 4, 6, 8, -4, -6 or -8, then 2 1 0 2 − ( x − 2 y − 1 ) 2 won't be a perfect square, so ( y − 6 ) 2 won't have an integer solution, but if x − 2 y − 1 is 2 or -2, y − 6 will be 7 or -7 and if x − 2 y − 1 is 10 or -10, y − 6 will be 1 or -1. The possible integer values of y − 6 is 7, -7, 1 or -1, and each of them have two possible integer values of x, so there are 4 ∗ 2 = 8 integer solutions for the equation.
To preserve parity, x must be odd. Let x = 2r - 1. Substituting, 2r^2 -4r + 3y^2 -4yr -9y = 13, so y must be odd. Let y = 2t - 1. Substituting, r^2 + 6t^2 - 4rt - 14t = 1, so r is odd. Let r = 2a - 1. Substituting, 2a^2 -4ta + 3t^2 = 2a + 5t. Writing as a quadratic equation in a, 2a^2 - (4t + 2)a + (3t^2 - 5t) = 0, with solution: 4a = 4t + 2 +/- sqrt(4*(14t -2t^2 + 1). For real solutions, t < 8. We find the following pairs to be valid: (t,a) = (0,0),(0,1),(3,1),(3,6),(4,2),(4,7),(7,7),(7,8). Substituting for x and y, we have: (x,y) =(- 3,-1),(1,-1),(1,5),(21,5),(5,7),(25,7),(25,13),(29,13). Ed Gray
Problem Loading...
Note Loading...
Set Loading...
Rearranging the equation given, we have x 2 − ( 4 y + 2 ) x + 6 y 2 − 2 0 y − 2 9 = 0 . Solving the quadratic for x ,
x = 2 4 y + 2 ± ( 4 y + 2 ) 2 − 4 ( 6 y 2 − 2 0 y − 2 9 ) = 2 4 y + 2 ± 1 2 0 + 9 6 y − 8 y 2 = 2 y + 1 ± 3 0 + 2 4 y − 2 y 2
For x to be an integer 3 0 + 2 4 y − 2 y 2 = 2 ( 5 1 − ( y − 6 ) 2 ) must be a perfect square for some integer y . For 3 0 + 2 4 y − 2 y 2 to be a perfect square, 5 1 − ( y − 6 ) 2 must be even and ( y − 6 ) 2 odd. And there are only 4 possibilities ( y − 6 ) 2 = 1 , 9 , 2 5 , 4 9 ; ( y − 6 ) 2 > 4 9 will make x unreal. Only when ( y − 6 ) 2 = 1 , 4 9 make 3 0 + 2 4 y − 2 y 2 a perfect square and we have:
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ ( y − 6 ) 2 = 1 ⟹ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ y = 5 y = 7 ⟹ { x = 1 x = 2 1 ⟹ { x = 5 x = 2 5 ( y − 6 ) 2 = 4 9 ⟹ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ y = − 1 y = 1 3 ⟹ { x = − 3 x = 1 ⟹ { x = 2 5 x = 2 9
There are a total of 8 integer solutions.