Integer to an integer in number theory ?

Does there exist positive integers n n such that n n 2017 n^n - 2017 is divisible by 2 2017 2^{2017} ?

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Leonel Castillo
Aug 29, 2018

Let's prove the existence of a particular solution. Let n = 201 7 a 1 n = 2017^{a_1} . Then we would need (remember that ϕ ( 2 k ) = 2 k 1 \phi(2^k) = 2^{k-1} ) 201 7 a 1 201 7 a 1 2017 0 m o d 2 2017 201 7 a 1 201 7 a 1 1 1 m o d 2 2017 a 1 201 7 a 1 1 0 m o d 2 2016 2017^{a_1 2017^{a_1}} - 2017 \equiv 0 \mod 2^{2017} \implies 2017^{a_1 2017^{a_1} - 1} \equiv 1 \mod 2^{2017} \implies a_1 2017^{a_1} - 1 \equiv 0 \mod 2^{2016} Now choose a 1 = 201 7 a 2 a_1 = 2017^{a_2} . Then we would need 201 7 a 2 + 201 7 a 2 1 0 m o d 2 2016 a 2 + 201 7 a 2 0 m o d 2 2015 2017^{a_2 + 2017^{a_2}} - 1 \equiv 0 \mod 2^{2016} \implies a_2 + 2017^{a_2} \equiv 0 \mod 2^{2015} . For this to be possible, a 2 a_2 would need to be odd so for convenience, remember that 2017 k m o d 2 2015 2017 \equiv -k \mod 2^{2015} for some k k . Thus, we can write the previous congruence as k a 2 a 2 0 m o d 2 2015 k^{a_2} - a_2 \equiv 0 \mod 2^{2015} . Now, choose a 2 = k a 3 a_2 = k^{a_3} . Then k k a 3 k a 3 0 m o d 2 2015 k a 3 ( k k a 3 a 3 1 ) 0 m o d 2 2015 k a 3 a 3 0 m o d 2 2014 k^{k^{a_3}} - k^{a_3} \equiv 0 \mod 2^{2015} \implies k^{a_3} \left( k^{k^{a_3} - a_3} - 1 \right) \equiv 0 \mod 2^{2015} \implies k^{a_3} - a_3 \equiv 0 \mod 2^{2014} Now we have ended in a congruence with the same form as the one we started with. So we can now use the substitution a 3 = k a 4 a_3 = k^{a_4} and repeat the entire procedure to get k a 4 a 4 0 m o d 2 2013 k^{a_4} - a_4 \equiv 0 \mod 2^{2013} . If we do this enough times we will end up with k a 2016 a 2016 0 m o d 2 k^{a_{2016}} - a_{2016} \equiv 0 \mod 2 and then we can just choose a 2016 = 1 a_{2016} = 1 . We can now just substitute back until we find a 1 a_1 .

So a solution is n = 201 7 201 7 ( 2 2015 2017 ) ( 2 2015 2017 ) . . . 2 2015 2017 n = 2017^{2017^{(2^{2015} - 2017)^{(2^{2015} - 2017})^{...^{2^{2015} - 2017}}}}

Note: The procedure outlined here and easily be generalized to prove that given a , b N a,b \in \mathbb{N} , a a odd, there always exist solutions to the congruence x x a 0 m o d 2 b x^x - a \equiv 0 \mod 2^b

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...