Integer Triples Making 100

How many ordered sets of positive integer triples ( a , b , c ) (a, b, c) are there such that a + b × c = 100 a+b\times c = 100 ?


The answer is 473.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Winston Wright
May 20, 2014

I used the a a just to fill in the difference between 100 and b × c b\times c . For every pair of integers b × c < 100 b\times c<100 , there will be one and only one triple. I went from 1 to 100 for b b and for each value of b b , there are 99 b 1 + 1 \left \lfloor { \frac {99} {b} } \right \rfloor -1 +1 possible values for c c . Summing this up is a little time consuming from 1 to 19, then the results become easier to calculate, because they come in large groups.

For b = 1 b=1 , we get 99 b = 99 \left \lfloor \frac {99}{b} \right \rfloor = 99 . For b = 2 b=2 , we get 99 b = 49 \left \lfloor \frac {99}{b} \right \rfloor=49 . For b = 3 b=3 , we get 99 b = 33 \left \lfloor \frac {99}{b} \right \rfloor = 33 . For b = 4 b=4 , we get 99 b = 24 \left \lfloor \frac {99}{b} \right \rfloor =24 . For b = 5 b=5 , we get 99 b = 19 \left \lfloor \frac {99}{b} \right \rfloor = 19 . For b = 6 b=6 , we get 99 b = 16 \left \lfloor \frac {99}{b} \right \rfloor = 16 . For b = 7 b=7 , we get 99 b = 14 \left \lfloor \frac {99}{b} \right \rfloor=14 . For b = 8 b=8 , we get 99 b = 12 \left \lfloor \frac {99}{b} \right \rfloor = 12 . For b = 9 b=9 , we get 99 b = 11 \left \lfloor \frac {99}{b} \right \rfloor = 11 . For b = 10 , 11 b=10, 11 , we get 99 b = 9 \left \lfloor \frac {99}{b} \right \rfloor = 9 . For b = 12 b= 12 , we get 99 b = 8 \left \lfloor \frac {99}{b} \right \rfloor=8 . For b = 13 , 14 b=13,14 , we get 99 b = 7 \left \lfloor \frac {99}{b} \right \rfloor = 7 . For b = 15 , 16 b=15, 16 , we get 99 b = 6 \left \lfloor \frac {99}{b} \right \rfloor=6 . For b = 17 b=17 to 19 19 , we get 99 b = 5 \left \lfloor \frac {99}{b} \right \rfloor = 5 . For b = 20 b=20 to 24 24 , we get 99 b = 4 \left \lfloor \frac {99}{b} \right \rfloor = 4 . For b = 25 b=25 to 33 33 , we get 99 b = 3 \left \lfloor \frac {99}{b} \right \rfloor =3 . For b = 34 b=34 to 49 49 , we get 99 b = 1 \left \lfloor \frac {99}{b} \right \rfloor=1 . For b = 50 b=50 to 99 99 , we get 99 b = 1 \left \lfloor \frac {99}{b} \right \rfloor =1 .

Hence, the total number of positive integer solutions is 99 + 49 + 33 + 24 + 19 + 16 + 14 99 +49+33+24+19+16+14 + 12 + 11 + 9 × 2 + 8 + 7 × 2 + 6 × 2 + 5 × 3 + 4 × 5 + 3 × 9 + 2 × 16 + 1 × 50 = 473 +12+11+9\times 2 +8+7\times 2+6\times 2+5\times 3+4\times 5+3\times 9+ 2\times 16+1\times 50 =473 .

[Details filled in - Calvin]

This question allows us to establish that i = 1 N ϕ ( i ) = i = 1 N N i \displaystyle \sum_{i=1}^N \phi(i) = \sum_{i=1}^N \left \lfloor \frac {N} {i} \right \rfloor .

How is it done?

Calvin Lin Staff - 7 years ago

Log in to reply

Isn't i = 1 N τ ( i ) = i = 1 N N i \sum _{ i=1 }^{ N }{ \tau (i)\quad =\quad \sum _{ i=1 }^{ N }{ \left\lfloor \frac { N }{ i } \right\rfloor } } ?

Kartik Sharma - 6 years, 6 months ago
Calvin Lin Staff
May 13, 2014

Since a a is at least 1, b b can take on any value from 1 to 99. For each value of b b , c c can be an integer from 1 to 99 b \frac {99}{b} , and then we set a = 100 b × c a = 100 - b \times c , to obtain a positive integer. As such, there are 99 b 1 + 1 \left \lfloor { \frac {99} {b} } \right \rfloor -1 +1 possible values for c c . (Note: x \left \lfloor x \right \rfloor denotes the largest integer less than or equal to x x ). We now calculate b = 1 99 99 b \displaystyle \sum_{b=1}^{99} \left \lfloor \frac {99}{b} \right \rfloor .

For b = 1 b=1 , we get 99 b = 99 \left \lfloor \frac {99}{b} \right \rfloor = 99 . For b = 2 b=2 , we get 99 b = 49 \left \lfloor \frac {99}{b} \right \rfloor=49 . For b = 3 b=3 , we get 99 b = 33 \left \lfloor \frac {99}{b} \right \rfloor = 33 . For b = 4 b=4 , we get 99 b = 24 \left \lfloor \frac {99}{b} \right \rfloor =24 . For b = 5 b=5 , we get 99 b = 19 \left \lfloor \frac {99}{b} \right \rfloor = 19 . For b = 6 b=6 , we get 99 b = 16 \left \lfloor \frac {99}{b} \right \rfloor = 16 . For b = 7 b=7 , we get 99 b = 14 \left \lfloor \frac {99}{b} \right \rfloor=14 . For b = 8 b=8 , we get 99 b = 12 \left \lfloor \frac {99}{b} \right \rfloor = 12 . For b = 9 b=9 , we get 99 b = 11 \left \lfloor \frac {99}{b} \right \rfloor = 11 . For b = 10 , 11 b=10, 11 , we get 99 b = 9 \left \lfloor \frac {99}{b} \right \rfloor = 9 . For b = 12 b= 12 , we get 99 b = 8 \left \lfloor \frac {99}{b} \right \rfloor=8 . For b = 13 , 14 b=13,14 , we get 99 b = 7 \left \lfloor \frac {99}{b} \right \rfloor = 7 . For b = 15 , 16 b=15, 16 , we get 99 b = 6 \left \lfloor \frac {99}{b} \right \rfloor=6 . For b = 17 b=17 to 19 19 , we get 99 b = 5 \left \lfloor \frac {99}{b} \right \rfloor = 5 . For b = 20 b=20 to 24 24 , we get 99 b = 4 \left \lfloor \frac {99}{b} \right \rfloor = 4 . For b = 25 b=25 to 33 33 , we get 99 b = 3 \left \lfloor \frac {99}{b} \right \rfloor =3 . For b = 34 b=34 to 49 49 , we get 99 b = 2 \left \lfloor \frac {99}{b} \right \rfloor=2 . For b = 50 b=50 to 99 99 , we get 99 b = 1 \left \lfloor \frac {99}{b} \right \rfloor =1 .

Hence, the total number of positive integer solutions is 99 + 49 + 33 + 24 + 19 + 16 + 14 99 +49+33+24+19+16+14 + 12 + 11 + 9 × 2 + 8 + 7 × 2 + 6 × 2 + 5 × 3 + 4 × 5 + 3 × 9 + 2 × 16 + 1 × 50 = 473 +12+11+9\times 2 +8+7\times 2+6\times 2+5\times 3+4\times 5+3\times 9+ 2\times 16+1\times 50 =473 .

Note: An alternative solution proceeds by from considering a = 1 a =1 to 99 99 and observing that there are σ 0 ( 100 a ) \sigma_0 (100-a) solutions. However, this requires listing all values of σ 0 ( n ) \sigma_0 (n) , which is tedious. In fact, this method of double-counting shows that i = 1 N σ 0 ( i ) = i = 1 N N i \displaystyle \sum_{i=1}^N \sigma_0 (i) = \sum_{i=1}^N \left \lfloor \frac {N} {i} \right \rfloor .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...