This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Taking the RHS inequality, we get x 2 − 1 4 x + 1 1 < x 2 − 2 x + 3 ⇒ x > 3 2 . For the LHS inequality, we have − x 2 + 2 x − 3 < x 2 − 1 4 x + 1 1 ⇒ 0 < 2 x 2 − 1 6 x + 1 4 ⇒ 0 < x 2 − 8 x + 7 ⇒ 0 < ( x − 1 ) ( x − 7 ) ⇒ x ∈ ( − ∞ , 1 ) ∪ ( 7 , ∞ ) . This gives us the entire solution set x ∈ ( 3 2 , 1 ) ∪ ( 7 , ∞ ) . If we want x ∈ N over the interval ( 7 , 1 0 0 ) , then there are 9 2 admissible values.