Integers as solutions! #2

Integers x x and y y satisfy

x 4 + x 2 + 2 = y 2 + y x^4+x^2+2=y^2+y

How many different solutions are there?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Aug 4, 2020

x 4 + x 2 + 2 = y 2 + y 4 x 4 + 4 x 2 + 8 = 4 y 2 + 4 y 4 x 4 + 4 x 2 + 1 + 8 = 4 y 2 + 4 y + 1 ( 2 x 2 + 1 ) 2 + 8 = ( 2 y + 1 ) 2 \begin{aligned} x^4+x^2+2&=y^2+y \\ 4x^4+4x^2+8&=4y^2+4y \\ 4x^4+4x^2+1+8&=4y^2+4y+1 \\ (2x^2+1)^2+8 &= (2y+1)^2 \end{aligned}

The only square numbers with a difference of 8 8 are 1 1 and 9 9 . Hence the only possible integer solutions are when ( 2 x 2 + 1 ) 2 = 1 (2x^2+1)^2=1 and ( 2 y + 1 ) 2 = 9 (2y+1)^2=9 , ie the pairs ( 0 , 2 ) (0,-2) and ( 0 , 1 ) (0,1) . So there are just 2 \boxed2 solutions in integers.

Tin Le
Aug 4, 2020

x 4 + x 2 + 2 = y 2 + y x^4+x^2+2=y^2+y

y ( y + 1 ) = x 4 + x 2 + 2 \Leftrightarrow y(y+1) = x^4+x^2+2 ( ) (*)

It's true that x 4 + x 2 < x 4 + x 2 + 2 < x 4 + x 2 + 2 + ( 4 x 2 + 4 ) x^4+x^2 < x^4 + x^2 + 2 < x^4+x^2 + 2 + (4x^2+4)

x 2 ( x 2 + 1 ) < y ( y + 1 ) < ( x 2 + 2 ) ( x 2 + 2 + 1 ) \Leftrightarrow x^2(x^2+1) < y(y+1) < (x^2+2)(x^2+2+1)

We have this property:

If x , y , k x,y,k are integers satisfying x ( x + k ) < y ( y + k ) < ( x + 2 ) ( x + 2 + k ) x(x+k) < y(y+k) < (x+2)(x+2+k) , then y ( y + k ) = ( x + 1 ) ( x + 1 + k ) y(y+k)=(x+1)(x+1+k)

According to the property above, we can conclude that y ( y + 1 ) = ( x 2 + 1 ) ( x 2 + 2 ) = x 4 + 3 x 2 + 2 y(y+1)=(x^2+1)(x^2+2) = x^4+3x^2+2 ( ) (**)

Substitute ( ) (**) in ( ) (*) , we have x 4 + 3 x 2 + 2 = x 4 + x 2 + 2 x = 0 x^4+3x^2+2=x^4+x^2+2 \Leftrightarrow x=0

Substitute x = 0 x=0 in ( ) (**) , we have y ( y + 1 ) = 2 y 2 + y 2 = 0 y { 2 , 1 } y(y+1) =2 \Leftrightarrow y^2+y-2=0 \Leftrightarrow y \in \{ -2,1 \}

Therefore, we have ( x , y ) = ( 0 , 2 ) , ( 0 , 1 ) (x,y) = (0,-2), (0,1) . Substitue these results into ( ) (*) , these solutions are correct.

Hence there are 2 \boxed{2} different solutions, that is ( x , y ) = ( 0 , 2 ) , ( 0 , 1 ) (x,y) = (0,-2), (0,1) .

I will add in the proof for the property soon.

Tin Le - 10 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...