Integers only please!

Algebra Level 2

How many integer values of x x satisfy both inequalities below?

{ 3 x + 10 < 1 8 x + 2 < 50 \large \begin{cases} -3x + 10 < 1 \\ 8x + 2 < 50 \end{cases}

3 4 0 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Denton Young
Jul 20, 2016

-3x + 10 < 1

-3x < -9

x > 3 (remember, multiplying a negative number flips the inequality)

8x + 2 < 50

8x < 48

x < 6

Since 3 < x < 6 and x can only take integer values, the only possibilities are 4 and 5. So there are two values that work.

Moderator note:

Simple standard approach.

Nikhil Raj
Jun 1, 2017

Given, { 3 x + 10 < 1 8 x + 2 < 50 { 3 x < 9 8 x < 48 { x > 3 x < 6 3 < x < 6 x = 4 , 5. No. of solutions = 2 \large \begin{cases} -3x + 10 < 1 \\ 8x + 2 < 50 \end{cases} \\ \implies \large \begin{cases} -3x < -9 \\ 8x < 48 \end{cases} \\ \implies \large \begin{cases} x > 3 \\ x < 6 \end{cases} \\ \implies 3 < x < 6 \implies x = 4,5. \\ \therefore {\text{No. of solutions}} = \color{#3D99F6}{\boxed2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...