Integral #1

Calculus Level 1

f ( x ) = e x sin ( x ) cos ( x ) d x f(x) = \int{e^{x}\sin{(x)}\cos{(x)}\ dx}

For f ( x ) f(x) as defined above, if f ( 0 ) = 3 f(0) = 3 and f ( π 8 ) = a + b e c f\left(\frac{\pi}{8}\right) = a + be^{c} , what is a + b + c a + b + c ?


The answer is 3.521988.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 22, 2020

f ( x ) = e x sin x cos x d x = 1 2 e x sin 2 x d x By integration by parts = 1 2 ( e x sin 2 x 2 e x cos 2 x d x ) = 1 2 e x sin 2 x e x cos 2 x 2 e x sin 2 x d x Note that f ( x ) = 1 2 e x sin 2 x d x = 1 2 e x sin 2 x e x cos 2 x 4 f ( x ) = e x 10 ( sin 2 x 2 cos 2 x ) + C where C is the constant of integration. f ( 0 ) = 2 10 + C = 3 C = 3.2 f ( π 8 ) = e π 8 10 ( 1 2 2 ) + 3.2 \begin{aligned} f(x) & = \int e^x \sin x \cos x \ dx \\ & = \frac 12 \int e^x \sin 2x \ dx & \small \blue{\text{By integration by parts}} \\ & = \frac 12 \left(e^x \sin 2x - \int 2 e^x \cos 2x \ dx \right) \\ & = \frac 12 e^x \sin 2x - e^x \cos 2x - 2 \blue{\int e^x \sin 2x \ dx} & \small \blue{\text{Note that }f(x) = \frac 12 \int e^x \sin 2x \ dx} \\ & = \frac 12 e^x \sin 2x - e^x \cos 2x - 4 \blue{f(x)} \\ & = \frac {e^x}{10} (\sin 2x - 2\cos 2x) + \blue C & \small \blue{\text{where }C \text{ is the constant of integration.}} \\ f(0) & = \frac {-2}{10} + C = 3 & \small \blue{\implies C = 3.2} \\ f \left(\frac \pi 8 \right) & = \frac {e^\frac \pi 8}{10}\left(\frac 1{\sqrt 2} - \sqrt 2\right) + 3.2 \end{aligned}

Therefore, a + b + c = 3.2 + 1 10 ( 1 2 2 ) + π 8 3.52 a+b+c = 3.2 + \frac 1{10}\left(\frac 1{\sqrt 2} - \sqrt 2\right) + \frac \pi 8 \approx \boxed{3.52} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...