∫ − ∞ 0 x e 3 x sin ( x ) d x = b a π
If the equation above holds true for positive integers a and b . find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Similar solution with @Hassan Abdulla's
I ( a ) ∂ a ∂ I ( a ) = ∫ − ∞ 0 x e a x sin x d x = ∫ − ∞ 0 e a x sin x d x = − e a x cos x ∣ ∣ ∣ ∣ − ∞ 0 + ∫ − ∞ 0 a e a x cos x d x = − 1 + a e a x sin x ∣ ∣ ∣ ∣ − ∞ 0 − a 2 ∫ − ∞ 0 e a x sin x d x = − 1 + 0 − a 2 ∂ a ∂ I ( a ) = − a 2 + 1 1 By integration of parts
⟹ I ( a ) = − ∫ a 2 + 1 1 d a = − tan − 1 a + C where C is the constant of integration.
We note that when a = 0
I ( 0 ) ⟹ C − tan 0 C ⟹ I ( a ) I ( 3 1 ) = ∫ − ∞ 0 x sin x d x = − ∫ 0 ∞ x sin x d x = Si ( 0 ) = 2 π = 2 π = 2 π = 2 π − tan − 1 a = 2 π − tan − 1 3 1 = 2 π − 6 π = 3 π = 3 1 π Replace x with − x where Si ( z ) is the sine integral.
⟹ a + b = 1 + 3 = 4
Problem Loading...
Note Loading...
Set Loading...
Let I ( a ) = ∫ − ∞ 0 x e a x ⋅ sin ( x ) d x
d a d I = ∫ − ∞ 0 x x e a x ⋅ sin ( x ) d x = ∫ − ∞ 0 e a x ⋅ sin ( x ) d x
d a d I = a 2 + 1 e a x ( a ⋅ sin ( x ) − cos ( x ) ) ∣ − ∞ 0 = a 2 + 1 − 1 //integration by parts
I ( a ) = ∫ a 2 + 1 − 1 d a = − tan − 1 ( a ) + C
w h e n a ⟶ ∞ I ( a ) = ∫ − ∞ 0 x e a x ⋅ sin ( x ) d x = 0 // since x<0 ⇒ e a x = e − ∞ = 0
I ( ∞ ) = − tan − 1 ( ∞ ) + C = − 2 π + C = 0 ⇒ C = 2 π
I ( a ) = 2 π − tan − 1 ( a )
∫ − ∞ 0 x e 3 x ⋅ sin ( x ) = I ( 3 1 ) = 2 π − tan − 1 ( 3 1 ) = 3 π = 3 1 π
a+b=4